Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Anh
Xem chi tiết
Akai Haruma
24 tháng 8 2020 lúc 18:14

Lời giải:

Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:

\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)

\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)

\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)

Nhị Tuyết
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 14:18

\(\frac{4tana\left(1-tan^2a\right)}{\left(1+tan^2a\right)^2}=\frac{4\frac{sina}{cosa}\left(\frac{cos^2a-sin^2a}{cos^2a}\right)}{\left(\frac{sin^2a+cos^2a}{cos^2a}\right)^2}=4sina.cosa.cos2a\)

\(=2sin2a.cos2a=sin4a\)

nguyễn thì hải nhi
Xem chi tiết
Caryln
Xem chi tiết
Akai Haruma
29 tháng 10 2023 lúc 17:03

Nếu chứng minh $\sqrt{x}+\sqrt{x+1}=1$ thì không có đủ cơ sở để cm bạn nhé. Bạn viết lại đề hoặc bổ sung thêm điều kiện để mọi người trợ giúp tốt hơn.

Nguyễn Vũ Minh Khôi
Xem chi tiết
Nguyễn Như Ý
16 tháng 9 2016 lúc 19:51

b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca

=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)

<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca

<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0

<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0

<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))

<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a

<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c

=>a=b=c (đpcm)

Bùi Hà Chi
16 tháng 9 2016 lúc 20:28

a) Theo đề bài: \(a^2+b^2=ab\)

=>\(a^2+b^2-ab=0\)

=>\(a^2-2ab+b^2+ab=0\)

=>\(\left(a-b\right)^2+ab=0\)

Vì \(\left(a-b\right)^2\ge0\)  để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)

(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)

b)\(a^2+b^2+c^2=ab+bc+ca\)

=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)

<=>a-b=b-c=a-c=0

<=>a=b=c (đpcm)

Phạm Thị Hoài Anh
Xem chi tiết
Hà anh
Xem chi tiết
alibaba nguyễn
21 tháng 12 2016 lúc 16:10

\(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)

\(=2xy+2yz+2zx\)

Nguyễn Trần Tuyết Liên
21 tháng 12 2016 lúc 16:18

\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)

\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(VT=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)

\(VT=2xy+2yz+2xz\)

\(VT=2\left(xy+yz+xz\right)\)

\(VT=VP\left(đpcm\right)\)

* VT: vế trái
  VP: vế phải

thien ty tfboys
21 tháng 12 2016 lúc 16:52

(x+y+z)2-x2-y2-z2   (1)

Ta co : 2(xy+yz+xz)

=2xy+2yz+2xz

=2xy+2yz+2xz+x2+y2+z2-x2-y2-z2

=(x+y+z)2-x2-y2-z2

Tu (1) suy ra dpcm 

DanAlex
Xem chi tiết
Tríp Bô Hắc
Xem chi tiết
ngoc bich 2
Xem chi tiết
Nguyệt
10 tháng 3 2019 lúc 21:27

\(\frac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

vì BĐT cuối đúng nên BĐT đầu đúng

ngoc bich 2
10 tháng 3 2019 lúc 21:35

Cảm ơn bạn nhiều nha....