Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thông Đỗ
Xem chi tiết
Nguyễn Phương Hiểu Nghi
Xem chi tiết
Ngô Thị Anh Minh
8 tháng 4 2018 lúc 21:09

a, Ta có: \(-x^2+4x-9+5=-x^2+4x-4\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\le0\)

=> \(-x^2+4x-9\le-5\)

b, Ta có: \(x^2-2x+9-8=x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(x^2-2x+9\ge8\)

➻❥ทջℴ☪ϑƴ⁀ᶦᵈᵒᶫ
11 tháng 4 2019 lúc 17:53

a, Ta có: −x2+4x−9+5=−x2+4x−4−x2+4x−9+5=−x2+4x−4

=−(x2−4x+4)=−(x2−4x+4)

=−(x−2)2≤0=−(x−2)2≤0

=> −x2+4x−9≤−5−x2+4x−9≤−5

b, Ta có: x2−2x+9−8=x2−2x+1=(x−1)2≥0x2−2x+9−8=x2−2x+1=(x−1)2≥0

=> x2−2x+9≥8

Đinh Thuận
Xem chi tiết
Aki Tsuki
26 tháng 4 2018 lúc 19:58

câu b sai đề bb ơi ,-,

a/ \(-x^2+4x-9=-\left(x^2-4x+4\right)-5=-\left(x-2\right)^2-5\)

Có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-5\le-5\left(đpcm\right)\)

b/ \(x^2-2x+90=\left(x^2-2x+1\right)+89=\left(x-1\right)^2+89\)

Có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+89\ge89\left(đpcm\right)\)

P/s: b tui sửa đề nhes

Nguyễn Hồng Phấn
Xem chi tiết
Nguyễn Ngọc Ánh Linh
9 tháng 4 2018 lúc 20:55

a) Ta có:      -\(x^2\)+4x - 9
             <=>  - ( \(x^2\)- 4x + 4 ) - 5 
             <=> - ( x - 2 )\(^2\) - 5 
Vì - ( x - 2 )\(^2\)\(\le\)0 <=>  - ( x - 2 )\(^2\) - 5  \(\le\)-5 với mọi x
b) Ta có      x\(^2\)- 2x + 9
            <=> ( x\(^2\) - 2x +1 ) + 8
            <=> ( x - 1 ) \(^2\)+ 8
Vì  ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x

FL.Han_
12 tháng 6 2020 lúc 20:59

a,Ta có:\(-x^2+4x-9\)

\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)

\(\Leftrightarrow-\left(x-2\right)^2-5\)

Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)

b.Ta có:\(x^2-2x+9\)

\(\Leftrightarrow\left(x^2-2x+1\right)+8\)

\(\Leftrightarrow\left(x-1\right)^2+8\)

Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)

Khách vãng lai đã xóa
Quỳnh
12 tháng 6 2020 lúc 21:06

Bài làm

a) Ta có: -x2 + 4x - 9 < -5

<=> -x2 + 4x - 9 + 5 < 0

<=> -x2 + 4x - 4 < 0

<=> -( x2 - 4x + 4 ) < 0

<=> -( x - 2 )2 < 0

<=> ( x - 2 )2 > 0 ( luôn đúng với mọi x )

Vậy -x2 + 4x - 9 < -5 với mọi x

b) x2 - 2x + 9 > 8

<=> x2 - 2x + 1 > 0

<=> ( x - 1 )2 > 0 ( luôn đúng với mọi x )

Mà với mọi x thì x thuộc tập hợp số thực.

Vậy x2 - 2x + 9 > 8 với mọi x là số thực. 

Khách vãng lai đã xóa
phương
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 16:33

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

cô nàng cự giải
Xem chi tiết
Chibi
23 tháng 4 2017 lúc 13:40

a.

-x2 + 4x - 9 <= -5

<=> -x2 + 4x - 4 <= 0

<=> -(x2 - 4x + 4) <= 0

<=> -(x - 2)<= 0. Luôn đúng với mọi x

b.

x2 - 2x + 9 >= 8

<=> x2 - 2x + 1 >= 0

<=> (x - 1)2 >= 0. Luôn đúng với mọi x

doan huong tra
10 tháng 5 2017 lúc 14:15

nhỏ hơn hoặc bằng 0 đều đúng nhé

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

dũng nguyễn đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Lê Đăng Hải Phong
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 20:58

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)