Cm -x2+ 4x -9 \(\le\) -5 với mọi x
huuuuuuuuuuuuheeeeeeeeeeeeeo
Chứng minh:– x2 + 4x – 9 -5 với mọi x
Chứng minh:
a) -x2+4x-9≤-5 với mọi x
b) x2-2x+9≥8 với mọi thực x
a, Ta có: \(-x^2+4x-9+5=-x^2+4x-4\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\le0\)
=> \(-x^2+4x-9\le-5\)
b, Ta có: \(x^2-2x+9-8=x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(x^2-2x+9\ge8\)
a, Ta có: −x2+4x−9+5=−x2+4x−4−x2+4x−9+5=−x2+4x−4
=−(x2−4x+4)=−(x2−4x+4)
=−(x−2)2≤0=−(x−2)2≤0
=> −x2+4x−9≤−5−x2+4x−9≤−5
b, Ta có: x2−2x+9−8=x2−2x+1=(x−1)2≥0x2−2x+9−8=x2−2x+1=(x−1)2≥0
=> x2−2x+9≥8
Chứng minh:a) \(-x^2+4x-9\le-5\) với mọi x.
b)\(x^2-2x+90\ge8\) với mọi số thực x.
câu b sai đề bb ơi ,-,
a/ \(-x^2+4x-9=-\left(x^2-4x+4\right)-5=-\left(x-2\right)^2-5\)
Có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-5\le-5\left(đpcm\right)\)
b/ \(x^2-2x+90=\left(x^2-2x+1\right)+89=\left(x-1\right)^2+89\)
Có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+89\ge89\left(đpcm\right)\)
P/s: b tui sửa đề nhes
Chứng minh:
a) \(-x^2+4x-9\le-5\)với mọi x
b)\(x^2-2x+9\ge8\)với mọi thực x
a) Ta có: -\(x^2\)+4x - 9
<=> - ( \(x^2\)- 4x + 4 ) - 5
<=> - ( x - 2 )\(^2\) - 5
Vì - ( x - 2 )\(^2\)\(\le\)0 <=> - ( x - 2 )\(^2\) - 5 \(\le\)-5 với mọi x
b) Ta có x\(^2\)- 2x + 9
<=> ( x\(^2\) - 2x +1 ) + 8
<=> ( x - 1 ) \(^2\)+ 8
Vì ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x
a,Ta có:\(-x^2+4x-9\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)
\(\Leftrightarrow-\left(x-2\right)^2-5\)
Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)
b.Ta có:\(x^2-2x+9\)
\(\Leftrightarrow\left(x^2-2x+1\right)+8\)
\(\Leftrightarrow\left(x-1\right)^2+8\)
Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)
Bài làm
a) Ta có: -x2 + 4x - 9 < -5
<=> -x2 + 4x - 9 + 5 < 0
<=> -x2 + 4x - 4 < 0
<=> -( x2 - 4x + 4 ) < 0
<=> -( x - 2 )2 < 0
<=> ( x - 2 )2 > 0 ( luôn đúng với mọi x )
Vậy -x2 + 4x - 9 < -5 với mọi x
b) x2 - 2x + 9 > 8
<=> x2 - 2x + 1 > 0
<=> ( x - 1 )2 > 0 ( luôn đúng với mọi x )
Mà với mọi x thì x thuộc tập hợp số thực.
Vậy x2 - 2x + 9 > 8 với mọi x là số thực.
chứng tỏ các bất phương trình sau luôn nghiệm đungs với mọi x
x2 - 4x+5>0
chứng minh rằng -x2+4x-10/x2+1<0 với mọi x
tìm x để biểu thức x2-4x+5 đạt giá trị nhỏ nhất
tìm x để biểu thức -x2+4x+4 đạt giá trị lớn nhất
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Cm; a/ -x^2+4x-9<=-5 với mọi x
b/x^2-2x+9>=8 với mọi số thực x
giup mk bai nay vs
a.
-x2 + 4x - 9 <= -5
<=> -x2 + 4x - 4 <= 0
<=> -(x2 - 4x + 4) <= 0
<=> -(x - 2)2 <= 0. Luôn đúng với mọi x
b.
x2 - 2x + 9 >= 8
<=> x2 - 2x + 1 >= 0
<=> (x - 1)2 >= 0. Luôn đúng với mọi x
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
Bài 18 trang 7 SBT Toán 8 Tập 1: Chứng tỏ rằng:
a. x2 – 6x + 10 > 0 với mọi x
b. 4x – x2 – 5 < 0 với mọi x
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)