Tìm m để 2 phương trình sau tương đương:
(x - 2) = 2x - 3 (1) và (m - 2)x = 2m + 4 (2)
5A. Các cặp bất phương trình sau đây có tương đương không?
a) x≤3 và 2x≤6 b) x2 + 3 >0 và |3x+1| < -1
5B. bất phương trình sau đây có tương đương không? Vì saO
a) 2+x >4 và -x < -2 b) ( x2+1 )x ≥ 0 và 2x4 ≥ 0
6A. Cho hai bất phương trình x+5 ≥ |m2+2m| + 12 và x≥7 . Tìm m để hai bất phương trình tương đương.
6B. Tìm các giá trị của m để hai bất phương trình x< -2 và x< \(\frac{m^2+4m-9}{2}\) tương đương.
ĐỐ CÁC BẠN LÀM ĐƯỢC:
Cho các phương trình:
(m-4)x2-2(2m+9)x-4=0 và (x+3)(2x+1)=0
Tìm giá trị tham số m để 2 phương trình đó tương đương.
Giải pt (1) :(x+3)(2x+1)=0
=>{x+3=0 / {2x+1=0
=> {x=-3 / {x=-1/2
Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .
+)Thay x=-3 vào pt (2) :
(m-4)(-3)^2 - 2(2m+9)(-3) -4 =0
=> (m-4)9 + 6(2m+9) - 4 = 0
=> 9m - 36+ 12m + 54 - 4= 0
=> 21m + 14 = 0
=> 21m = -14
=> m= -2/3
Vậy ...
+) Thay x= -1/2 vào pt (2) :
(m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0
=>1/4(m-4) + 2m +9 - 4 = 0
=>1/4m -1 +2m +9 - 4 =0
=>9/4m +4 =0
=>9/4m = -4
=>m =-16/9
Vậy ...
tìm m để 2 phương trình sau tương đương
3(x-2)=2x-7 và (m-2)x=m+4
Tìm m để 2 phương trình sau tương đương: PT(1): \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
PT(2): \(x^2-\left(3-2m\right)x-6m=0\)
Cho phương trình :2(m-1)x+3=2m-5 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất 1 ẩn
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x+5=3(x+2)-1(*)
a.
(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)
b.
Ta có: \(2x+5=3\left(x+2\right)-1\)
\(\Leftrightarrow2x+5=3x+5\)
\(\Leftrightarrow x=0\)
Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm
\(\Rightarrow2\left(m-1\right).0+3=2m-5\)
\(\Rightarrow m=4\)
Cho phương trình: 2(m - 1)x + 3 = 2m – 5 (1) |
a) Tìm m để phương trình (1) là phương trình bậc nhất một ẩn.
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x + 5 = 3(x + 2) - 1 (*).
a, Để phương trình (1) là phương trình bậc nhất một ẩn thì \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
b,Để pt trên là pt tương đương thì pt(1) có nghiệm x=0, thay x=0 vào pt(1) ta có:
\(2\left(m-1\right)x+3=2m-5\\ \Leftrightarrow2\left(m-1\right).3+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
a: Để (1) là phươg trình bậc nhất 1 ẩn thì (m-1)<>0
hay m<>1
b: Ta có: 2x+5=3(x+2)-1
=>2x+5=3x+6-1
=>3x+5=2x+5
=>x=0
Thay x=0 vào (1), ta được:
2m-5=3
hay m=4
Cho phương trình: 2( m – 1 ) x + 3 = 2m – 5 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất một ẩn.
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x + 5 = 3( x + 2 ) – 1
a, Để pt trên là pt bậc nhất 1 ẩn thì: \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
Để pt (1) tương đương vs pt trên thì
\(2\left(m-1\right).0+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
Cho 2 pt : \(x^2+x+m+1=0\)
\(x^2-\left(m+2\right)x+2m+4=0\)
Tìm m để 2 phương trình trên tương đương.
Cho phương trình: 2(m-1)x+3=2m-5
a) Tìm m để phương trình trên là phương trình bậc nhất một ẩn
b) Với giá trị nào của m thì phương trình trên tương đương vs phương trình 2x+5=3(x+2)-1