Giá trị nhỏ nhất của \(A=\dfrac{x-y}{x^4-y^4+6}\)
Cho ba số thực x, y, z không âm thỏa mãn \(2^x+4^y+8^z=4\). Gọi M, N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(S=\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{z}{2}\). Đặt \(T=2M+6N\). Khẳng định nào dưới đây đúng?
A. \(T\in\left(1,2\right)\) B. \(T\in\left(2,3\right)\) C. \(T\in\left(3,4\right)\) D. \(T\in\left(4,5\right)\)
Giải chi tiết cho mình với ạ, mình cảm ơn nhiều ♥
Đặt \(\left(\dfrac{x}{6};\dfrac{y}{3};\dfrac{z}{2}\right)=\left(a;b;c\right)\Rightarrow2^{6a}+4^{3b}+8^{2c}=4\)
\(\Leftrightarrow64^a+64^b+64^c=4\)
Áp dụng BĐT Cô-si:
\(4=64^a+64^b+64^c\ge3\sqrt[3]{64^{a+b+c}}\Rightarrow64^{a+b+c}\le\dfrac{64}{27}\)
\(\Rightarrow a+b+c\le log_{64}\left(\dfrac{64}{27}\right)\Rightarrow M=log_{64}\left(\dfrac{64}{27}\right)\)
Lại có: \(x;y;z\ge0\Rightarrow a;b;c\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}64^a\ge1\\64^b\ge1\\64^c\ge1\end{matrix}\right.\) \(\Rightarrow\left(64^b-1\right)\left(64^c-1\right)\ge0\)
\(\Rightarrow64^{b+c}+1\ge64^b+64^c\) (1)
Lại có: \(b+c\ge0\Rightarrow64^{b+c}\ge1\Rightarrow\left(64^a-1\right)\left(64^{b+c}-1\right)\ge0\)
\(\Rightarrow64^{a+b+c}+1\ge64^a+64^{b+c}\) (2)
Cộng vế (1);(2) \(\Rightarrow4=64^a+64^b+64^c\le64^{a+b+c}+2\)
\(\Rightarrow64^{a+b+c}\ge2\Rightarrow a+b+c\ge log_{64}2\)
\(\Rightarrow N=log_{64}2\)
\(\Rightarrow T=2log_{64}\left(\dfrac{64}{27}\right)+6log_{64}\left(2\right)\approx1,4\)
xét các số thực dương x , y thoả mãn x + 4 = 6 . tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |
a,Tìm x,y,z biết: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
b,Tìm GTNN(Giá trị nhỏ nhất) của \(A=\dfrac{5x^2-x+1}{x^2}\)
cho x,y ;x+y≤5.tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{4}{x}\)+\(\dfrac{3}{y}\)-x-\(\dfrac{5y}{3}\)
giúp mình bro ơi
tìm giá trị nhỏ nhất của biểu thức: A=\(\dfrac{1}{1+x^2}+\dfrac{4}{4+y^{2^{ }}}+xy\) với xy≥2
Lời giải:
Đặt $x=a; \frac{y}{2}=b$ thì bài toán trở thành:
Tìm min $A=\frac{1}{a^2+1}+\frac{1}{b^2+1}+2ab$ với $ab\geq 1$
----------------------------------
Với $ab\geq 1$, ta có BĐT khá quen thuộc:
$\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}$ (để cm BĐT này bạn chỉ cần biến đổi tương đương)
Áp dụng vào bài và sử dụng thêm BĐT AM-GM:
$A\geq \frac{2}{ab+1}+2ab=\frac{2}{ab+1}+\frac{ab+1}{2}+\frac{3ab-1}{2}$
$\geq 2\sqrt{\frac{2}{ab+1}.\frac{ab+1}{2}}+\frac{3ab-1}{2}$
$=2+\frac{3ab-1}{2}\geq 2+\frac{3.1-1}{2}=3$
Vậy $A_{\min}=3$.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Cho x và y là các số dương thỏa mãn: x+y=1. Tìm giá trị nhỏ nhất của : \(B=\dfrac{4}{x}+\dfrac{9}{y}\)
\(B=\dfrac{2^2}{x}+\dfrac{3^2}{y}\ge\dfrac{\left(2+3\right)^2}{x+y}=25\)
\(B_{min}=25\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};\dfrac{3}{5}\right)\)