D = \(\dfrac{\dfrac{12}{19}-12+\dfrac{12}{47}}{\dfrac{6}{47}-6-\dfrac{16}{47}}\)
so sánh qua số trung gian:
a)\(\dfrac{12}{49}\);\(\dfrac{13}{47}\)
b)\(\dfrac{12}{47}\);\(\dfrac{19}{77}\)
giúp mk với
a: \(\dfrac{12}{49}< \dfrac{13}{49}< \dfrac{13}{47}\)
b: \(\dfrac{12}{47}>\dfrac{19}{47}>\dfrac{19}{77}\)
a) Ta chọn phân số \(\dfrac{12}{47}\) là phân số trung gian, ta có :
\(\dfrac{12}{49}< \dfrac{12}{47};\dfrac{13}{47}>\dfrac{12}{47}\Rightarrow\dfrac{12}{49}< \dfrac{13}{47}\)
\(l,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(m,\left(3-2\dfrac{1}{3}+\dfrac{1}{4}\right):\left(4-5\dfrac{1}{6}+2\dfrac{1}{4}\right)\)
\(n,F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(p,F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)
x + \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}=\dfrac{47}{42}\)
\(\Rightarrow x+\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x=\dfrac{47}{42}-\dfrac{5}{6}=\dfrac{2}{7}\)
\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}+\)
đề bài là \(Tính\)
Ta có : \(\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4.\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(=\dfrac{3\times\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\times\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}\)
\(=\dfrac{3}{4}\)
\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
Thực hiện phép tính:
a) \(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b) \(\dfrac{3}{8}.19\dfrac{1}{3}-\dfrac{3}{8}.33\dfrac{1}{3}\)
c) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
d) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{4}{5}\)
e) \(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\)
Mình chỉ cho đáp án thôi,sai thì châm chước cho mìn nha!
a)-91 phần200
b)-25phần 4
c)5 phần 2
d)2
e)0
a, ( 0,36-2,18) : ( 3,8 + 0,2)
= -1,82 : 4
=-0,455 hay -91/200
b, 3/8*19/1/3-3/8*33/1/3
=3/8*(19/1/3-33/1/3)
=3/8*(-14)
=-21/4
\(a,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}+\dfrac{-0,25.\dfrac{-2}{3}-75\%:\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)}{\left|-1\dfrac{1}{2}\right|.\left(\dfrac{-2}{3}-0,75:\dfrac{3}{-2}\right)}\)
tính nhanh nếu có thể:
a)\(\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+.....+\dfrac{4}{2008.2010}\)
b)\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
a)\(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2008\cdot2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
b)\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
a) gọi biểu thức đó là A
Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2009}\right)\)
\(A=2.\left(\dfrac{2007}{4018}\right)=\dfrac{2007}{2009}\)
b) dễ quá bạn tự làm. (không phải mink không biết làm đâu nha)
So sánh các phân số bằng cách chọn phân số chung gian:
a, \(\dfrac{11}{32}\) và \(\dfrac{16}{49}\)
b, \(\dfrac{46}{71}\) và \(\dfrac{38}{55}\)
c, \(\dfrac{12}{47}\) và \(\dfrac{29}{117}\)
d, \(\dfrac{18}{53}\) và \(\dfrac{34}{103}\)
Giải chi tiết ra giúp mình nhé @ _ @
Mina giúp mk vs!!!!!!!!!!
1)So sánh
a)\(\dfrac{12}{47}và\dfrac{11}{53}\) b)\(\dfrac{456}{461}và\dfrac{123}{128}\) c)\(\dfrac{12}{47}và\dfrac{19}{77}\)
d)\(A=\dfrac{13^{15}+1}{13^{16}+1}và\) \(B=\dfrac{13^{16}+1}{13^{17}+1}\)
P/s:Cherry Võ tag Trần Huyền Trang giùm cái please
a) \(\dfrac{12}{47}\) và \(\dfrac{11}{53}\)
Ta có: \(\dfrac{11}{47}>\dfrac{11}{53}\) mà \(\dfrac{12}{47}>\dfrac{11}{47}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)
a) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{11}{44}>\dfrac{11}{53}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{11}{53}\)
b) Ta có : \(\dfrac{456}{461}=1-\dfrac{5}{461}\)
\(\dfrac{123}{128}=1-\dfrac{5}{128}\)
Vì \(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow1-\dfrac{5}{461}>1-\dfrac{5}{128}\)
\(\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
c) Ta có :\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}=\dfrac{19}{76}>\dfrac{19}{77}\)
=> \(\dfrac{12}{47}>\dfrac{19}{77}\)
d) Ta có : \(13A=13.\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{16}+13}{13^{16}+1}=\dfrac{13^{16}+1+12}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=13.\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{17}+13}{13^{17}+1}=\dfrac{13^{17}+1+12}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Ta thấy : \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\Rightarrow\dfrac{13^{15}+1}{13^{16}+1}>\dfrac{13^{16}+1}{13^{17}+1}\)
a) Ta có : \(\dfrac{12}{47}>\dfrac{12}{53}>\dfrac{11}{53}\) \(\Leftrightarrow\dfrac{12}{47}>\dfrac{11}{53}\) b) Ta có : \(\dfrac{456}{461}=\dfrac{461-5}{461}=1-\dfrac{5}{461}\) \(\dfrac{123}{128}=\dfrac{128-5}{128}=1-\dfrac{5}{128}\) Do \(1-\dfrac{5}{461}>1-\dfrac{5}{128}\) \(\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\) c) Ta có: \(\dfrac{12}{47}\) > \(\dfrac{12}{48}=\dfrac{1}{4}\) \(\dfrac{19}{77}< \dfrac{19}{76}=\dfrac{1}{4}\) Do \(\dfrac{12}{47}>\dfrac{1}{4}>\dfrac{19}{77}\) \(\Rightarrow\dfrac{12}{47}>\dfrac{19}{77}\) d) Ta có : A=\(\dfrac{13^{15}+1}{13^{16}+1}\) \(\Leftrightarrow\) 13A=\(\dfrac{13.\left(13^{15}+1\right)}{13^{16}+1}\) \(\Leftrightarrow\) 13A=\(\dfrac{13^{16}+13}{13^{16}+1}\) \(=\dfrac{13^{16}+1+12}{13^{16}+1}=\dfrac{13^{16}+1}{13^{16}+1}+\dfrac{12}{13^{16}+1}\)
\(=1+\dfrac{12}{13^{16}+1}\) B=\(\dfrac{13^{16}+1}{13^{17}+1}\) \(\Leftrightarrow\) 13B=\(\dfrac{13.\left(13^{16}+1\right)}{13^{17}+1}\)
\(\Leftrightarrow\) 13B=\(\dfrac{13^{17}+13}{13^{17}+1}=\dfrac{13^{17}+1+12}{13^{17}+1}\) \(=\dfrac{13^{17}+1}{13^{17}+1}+\dfrac{12}{13^{17}+1}\) \(=1+\dfrac{12}{13^{17}+1}\)
Do \(1+\dfrac{12}{13^{16}+1}.>1+\dfrac{12}{13^{17}+1}\) nên 13A>13B \(\Rightarrow\) A>B