Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Phúc
Xem chi tiết

Sửa đề: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{100^2}<\frac34\)

Ta có: \(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)

\(\frac{1}{4^2}<\frac{1}{3\cdot4}=\frac13-\frac14\)

...

\(\frac{1}{100^2}<\frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

Do đó: \(\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{100^2}<\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{99}-\frac{1}{100}=\frac12-\frac{1}{100}<\frac12\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{100^2}<\frac14+\frac12=\frac34\)


Nguyễn Tú Hà
Xem chi tiết
Phong
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

Đặng Anh Quế
Xem chi tiết
ST
11 tháng 3 2017 lúc 20:17

Bài 1:

Ta có: \(\frac{1}{51}>\frac{1}{100}\)

           \(\frac{1}{52}>\frac{1}{100}\)

......

             \(\frac{1}{99}>\frac{1}{100}\)

Công vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)        (1)

Lại có: \(\frac{1}{51}< \frac{1}{50}\)

            \(\frac{1}{52}< \frac{1}{50}\)

.....

             \(\frac{1}{100}< \frac{1}{50}\)

Cộng vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\)             (2)

Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)

ST
11 tháng 3 2017 lúc 20:35

Bài 2:

Đặt S = 1/41 + 1/42 +...+ 1/80

S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng

Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)\(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)\(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)

=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)

=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)

=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)

Nguyễn An Vy
Xem chi tiết
.
16 tháng 6 2020 lúc 22:25

Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\)   (8 số hạng)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)

Khách vãng lai đã xóa
Than toan hoc
16 tháng 6 2020 lúc 22:44

\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

Khách vãng lai đã xóa
duongphuongbac
Xem chi tiết
Lam
28 tháng 4 2022 lúc 13:58

Đặt B=122+132+...+182B=122+132+...+182A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

Phan Nhất Anh
Xem chi tiết
Earth-K-391
Xem chi tiết
boy not girl
8 tháng 5 2021 lúc 16:45

fan bé sans à

IamnotThanhTrung
8 tháng 5 2021 lúc 16:47

wuttttt

Đoàn Đạt
8 tháng 5 2021 lúc 16:49

undefined

BiBo MoMo
Xem chi tiết
Hoàng Văn Đạt
21 tháng 7 2022 lúc 20:54

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

Như An
Xem chi tiết