Cho tam giác ABC.Gọi M là điểm bất kì trên cạnh AC,qua M kẻ các đường thẳng ME,MF lần lượt song song với cạnh AB,AC.Tìm vị trí của M để diện tích tứ giác BÈM có diện tích lớn nhất.
Cho tam giác ABC. Gọi M là điểm bất kỳ trên cạnh AC. Qua M kẻ các đường thẳng ME,MF lần lượt song song với cạnh AB,BC (\(E\in BC\)và \(F\in AB\)). Tìm vị trí của M để diện tích tứ giác BEMF có diện tích lớn nhất
Cho tam giác ABC. Gọi M là điểm bất kì trên cạnh AC, qua M kẻ các đường thẳng ME, MF lần lượt song song với các cạnh AB, BC (E thuộc BC và F thuộc AB). Tìm vị trí của M để dt tứ giác BEMF có dt lớn nhất.
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
cho hình chữ nhật ABCD có AB = 6cm , Ad = 4 cm . M là một điểm bất kì trên cạnh AB ( m không trùng với a và B ) qua M kẻ các đuqowngf thẳng d ,d' lần lượt song song với AC, BD , chúng cắt các cạnh BC , AD theo thứ tự tại N,Q . Qua N kẻ đường thẳng song song với BD cắt CD tại P . Tìm vị trí của M trên AB để diện tích tứ giác MNPQ là lớn nhất
Cho tam giác ABC, điểm M di động trên cạnh BC. Qua M kẻ các đường thẳng song song với cạnh AB và cạnh AC; chúng cắt cạnh AB và AC lần lượt tại các điểm D và E. Xác định điểm M sao cho diện tích của tứ giác ADME là lớn nhất.
Cho tam giác nhọn ABC, điểm M di chuyển trên cạnh BC (M không trùng B và C). Qua M kẻ các đường thẳng song song với AC và AB, các đường thẳng này cắt AC và AB thứ tự tại D và E. Xác định vị trí của M sao cho tứ giác ADME có diện tích lớn nhất.
Cho tam giác ABC,trên cạnh BC lấy điểm M. Qua điểm M kẻ các đường thẳng song song với AC và AB thứ tự cắt AB và AC tại E và F.
1) CM: \(\frac{ME}{AC}\)+\(\frac{MF}{AB}\)có giá trị không đổi
2) Cho biết diện tích của các tam giác MBE và MCF thứ tự là \(a^2\)và \(b^2\).Tính diện tích tam giác BC theo a và b
3) Xác định vị trí của M để diện tích tứ giác AEMF lớn nhất
a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)
Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.
b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)
\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)
c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)
\(=2ab\le a^2+b^2\)
Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.
Cho tam giác ABC. Gọi M là điểm bất kỳ trên cạnh AC, qua M kẻ các đường thẳng ME, MF lần lượt song song với cạnh AB, BC. Tìm vị trí của M để diện tích tứ giác BEMF có diện tích lớn nhất
Ta có: \(S_{BEMF}=S_{ABC}-\left(S_{AEM}+S_{CMF}\right)\)
Để: \(S_{BEMF}\) lớn nhất thì \(\Leftrightarrow S_{AEM}+S_{CMF}\) phải nhỏ nhất.
\(\Leftrightarrow M\) là trung điểm của \(AC\) thì diện tích tứ giác \(BEMF\) có diện tích lớn nhất.
Cho tam giác \(ABC\). Từ điểm \(M\) thuộc cạnh \(AC\) kẻ các đường thẳng song song với các cạnh \(AB\) và \(BC\) cắt \(BC\) tại \(E\) và \(AB\) tại \(F\). Hãy xác định vị trí của \(M\) trên \(AC\) sao cho hình bình hành \(BEMF\) có diện tích lớn nhất.
Ta đặt: \(S_{BEMF}=S_1;S_{ABC}=S\)
Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)
Ta có: \(S_1=EM.HK\)
\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)
\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)
Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:
\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)
\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:
\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)
\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)
\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)
qua M của tam giác ABC kẻ các đường thẳng song song vs các cạnh AB và AC tạo thành hình bình hành.tìm vị trí của M để hình bình hành có diện tích lớn nhất
cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC.Qua điểm M kẻ các đường thẳng song song với AB và AC, chúng lần lượt cắt AC và AB tại E và F.
A)tứ giác AFME là hình gì?
B)Tìm vị trí của điểm M trên cạnh BC để tứ giác AFME là hình vuông.
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)
=>AM là tia phân giác của \(\widehat{BAC}\)
=>M là chân đường phân giác kẻ từ A xuống BC