Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁WღX༺
Xem chi tiết
dinh thi tuyet hong
Xem chi tiết
cuong nguyen manh
21 tháng 3 2016 lúc 21:16

Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song)

Kẻ AH vuông góc BC tại H , AH cắt MF tại G.

Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC

Gọi AM = x; MC = y  thìAC = x + y

Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet)

Thì FM/BC=x/x+y

Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y

Do đó  Sbefm/Sabc=2*xy/(x+y)^2

Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4

Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc

Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y

 Hay M là trung điểm của AC.

Gõ mỏi tay ko biết đc j ko-_-

Yim Yim
Xem chi tiết
Me
Xem chi tiết
Thới Nguyễn Phiên
Xem chi tiết
Hà Thu Hằng
Xem chi tiết
Cô Hoàng Huyền
9 tháng 5 2017 lúc 11:25

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [E, M] Đoạn thẳng l: Đoạn thẳng [F, M] A = (-1.14, 6.85) A = (-1.14, 6.85) A = (-1.14, 6.85) B = (-3.22, 3.05) B = (-3.22, 3.05) B = (-3.22, 3.05) C = (4.24, 2.98) C = (4.24, 2.98) C = (4.24, 2.98) Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h

a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)

Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.

b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)

\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)

c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)

\(=2ab\le a^2+b^2\)

Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.

Lunox Butterfly Seraphim
Xem chi tiết
Diệu Huyền
7 tháng 2 2020 lúc 22:41

A B C E M F Hình ảnh chỉ mang tính chất minh họa :))

Ta có: \(S_{BEMF}=S_{ABC}-\left(S_{AEM}+S_{CMF}\right)\)

Để: \(S_{BEMF}\) lớn nhất thì \(\Leftrightarrow S_{AEM}+S_{CMF}\) phải nhỏ nhất.

\(\Leftrightarrow M\) là trung điểm của \(AC\) thì diện tích tứ giác \(BEMF\) có diện tích lớn nhất.

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Xuân Thành
5 tháng 9 2023 lúc 13:34

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

Nguyễn Xuân Thành
5 tháng 9 2023 lúc 13:49

image

Mr Ray
Xem chi tiết
Chi thối
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 19:45

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)

=>AM là tia phân giác của \(\widehat{BAC}\)

=>M là chân đường phân giác kẻ từ A xuống BC