Cho \(S=5+5^2+5^3+...+5^{2006}\)
Chứng minh rằng \(S⋮126\)
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
Ta có
\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)
hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
mà
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)
hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)
mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126
còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.
Cho S= 5+5^2+5^3+...+5^2006. Tính S. Chứng minh S chia hết cho 126
ko chia hết được bán nhé nên không chứng minh được
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )
= 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )
= 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )
= 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126
= 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126
=> A ⋮ 126 ( đpcm )
Cho S = 5 + 52 + 53 + ... + 52006.
a) Tính S.
b) Chứng minh rằng S \(⋮\)126
a, tính 5S rồi lấy 5S trừ S là xong
b, chịu
a) \(S=5+5^2+5^3+...+5^{2006}\)
\(5S=5^2+5^3+5^4+...+5^{2007}\)
\(5S-S=4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
b)Đề hơi sai sai. Nếu như đề là chứng minh S chia hết cho 155 thì mới làm được =,=
Đề ko sai đâu đề chính thức đi thi mà .
À mà mk tính ra rồi.
Lấy 5 + 54 rồi lấy 52 + 55 ...
Sau đó tính 5 ( 1 + 53 ) = 5 . 126
Cho S= 5+5^2+5^3+............+5^2006.Chứng minh S không chia hết cho 126
Vì S có 2006 số hạng nên ta chia S thành 334 nhóm mỗi nhóm có 6 số hạng và còn thừa 2 số hạng như sau:
S=5+52+[(53+56)+(54+57)+(55+58)]+.......+[(52001+52004)+(52002+52005)+(52003+52006)]=30+[53(1+125)+54(1+125)+55(1+125)]+.....+[52001(1+125)+52002(1+125)+52003(1+125)]=30+53.126+54.126+55.126+....+52001.126+52002.126+52003.126
=30+126(53+54+55+......+52001+52002+52003)=>S chia 126 dư 30
=> S không chia hết cho 126 (đpcm)
Cho S=5+5^2+5^3+......+5^2006
a;Tính S
b;Chứng minh S chia hết cho 126
b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 )
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 )
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126
= 126 ( 5 + .... + 5^2003 )
=> chia hết cho 126
a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình
S = 5 + 5^2 + 5^3 + ... + 5^2006
a) Tính S
b ) chứng minh S chia hết cho 126
a) Ta có : S = 5 + 52 + 53 + ... + 52006
5S = 52 + 53 + 54 + ... + 52007
5S - S = ( 52 + 53 + 54 + ... + 52007 ) - ( 5 + 52 + 53 + ... + 52006 )
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
b) Lại có : S = 5 + 52 + 53 + ... + 52006
S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 52003 + 52006 )
S = 5 . ( 1 + 53 ) + 52 . ( 1 + 53 ) + 53 . ( 1 + 53 ) + ... + 52003 . ( 1 + 53 )
S = 5 . 126 + 52 . 126 + 53 . 126 + ... + 52003 . 126
S = 126 . ( 5 + 52 + 53 + ... + 52003 ) \(⋮\)126 ( đpcm )
Ta có : S = 5 + 52 + 53 + ...... + 52006
=> 5S = 52 + 53 + ...... + 52007
=> 5S - S = 52007 - 5
=> 4S = 52007 - 5
=> S = \(\frac{5^{2007}-5}{4}\)
a) S = 5 + 5 ^ 2 + 5 ^ 3 + ... + 5 ^ 2006
5.S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007
5.S - S = 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + ... + 5 ^ 2007 - 5 - 5 ^ 2 - 5 ^ 3 - ... - 5 ^ 2006
4.S = 5 ^ 2007 - 5
S = \(\frac{5^{2007}-5}{4}\)
cho S = 5 +52+53+...+52006. chứngminh S: hét 126
Nguyễn Quang Thành tính thử đê
S = 5 + 52 + 53 +....+ 52006
S = (5 + 52 + 53 + 54 + 55 + 56) +...+ (52001 + 52002 + 52003 + 52004 + 52005 + 52006)
S = (5 + 52 + 53 + 54 + 55 + 56) +...+ 52000(5 + 52 + 53 + 54 + 55 + 56)
S = 19530 +...+ 52000.19530
S = 19530(1 +...+ 52000) chia hết cho 126 (Vì 19530 chia hết cho 126)
Câu 1 : Cho ;
S=5+5^2+5^3+... + 5^2006
a, Tính S
b, Chứng minh S chia hết cho 126
a, mình nhân cả hai vế với 5 nha bạn
5S=5(5+5^2+5^3+.............+5^2006)
5S=5^2+5^3+..............+5^2007
5S-S=(5^2+5^3+.......+5^2007)-(5+5^2+.....+5^2006)
4S=5^2007-5
S=(5^2007-5):4
Cho S=5+52+53+...+52006
a/Tính S
b/Chứng minh S chia hết cho 126