Những câu hỏi liên quan
Hoàng Quốc Tuấn
Xem chi tiết
Diệu Huyền
29 tháng 11 2019 lúc 8:48

Theo giả thiết ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}\)

\(=\frac{a^2c+b^2a+bc^2-b^2c-c^2a-a^2b}{abc}\)

\(=\frac{c\left(a^2-b^2\right)+ab\left(b-a\right)+c^2\left(b-a\right)}{abc}\)

\(=\frac{c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)}{abc}\)

\(=\frac{\left(a-b\right)\left(ca+cb-ab-c^2\right)}{abc}\)

\(=\frac{\left(a-b\right)\left[a\left(c-b\right)+c\left(b-c\right)\right]}{abc}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\le0\)

\(a\ge b\ge c\ge0\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\le\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Bạn xem lại đề nhé!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thúy Nga
Xem chi tiết
pink princess
Xem chi tiết
Harry James Potter
Xem chi tiết
Phùng Minh Quân
6 tháng 8 2019 lúc 11:06

\(\frac{a^3}{b\left(b+c\right)}+\frac{b}{2}+\frac{b+c}{4}\ge3\sqrt[3]{\frac{a^3}{b\left(b+c\right)}.\frac{b}{2}.\frac{b+c}{4}}=\frac{3}{2}a\)

\(\Leftrightarrow\)\(\frac{a^3}{b\left(b+c\right)}\ge\frac{3}{2}a-\frac{1}{2}b-\frac{1}{4}\left(b+c\right)=\frac{3}{2}a-\frac{3}{4}b-\frac{1}{4}c\)

Tương tự, ta có: \(\frac{b^3}{c\left(c+a\right)}\ge\frac{3}{2}b-\frac{3}{4}c-\frac{1}{4}a;\frac{c^3}{a\left(a+b\right)}\ge\frac{3}{2}c-\frac{3}{4}a-\frac{1}{4}b\)

Cộng theo vế 3 bđt ta được đpcm 

Bình luận (0)
Darth Vader
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Bình luận (0)
nguyễn thị thảo vân
Xem chi tiết
Nguyễn Tuấn
11 tháng 2 2016 lúc 20:07

Đặt b + c = x ; c + a = y ; a + b = z 
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2 
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z 
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3) 

Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được 
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm) 

Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c 

Bình luận (0)
Nguyễn Tuấn
11 tháng 2 2016 lúc 20:23

P = a/(b+c) + b/(c+a) + c/(a+b) 
P + 3 = 1+ a/(b+c) + 1+ b/(c+a) + 1+ c/(a+b) 
P + 3 = (a+b+c)/(b+c) + (a+b+c)/(b+c) + (a+b+c)/(c+a) 
P + 3 = (a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] (*) 

ad bđt cô si cho 3 số: 
2(a+b+c) = (a+b) + (b+c) + (c+a) ≥ 3.³√(a+b)(b+c)(c+a) 
1/(b+c) + 1/(c+a) + 1/(a+b) ≥ 3.³√1/(a+b)(b+c)(c+a) 

nhân lại vế theo vế 2 bđt: 2(a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] ≥ 9 
=> P + 3 ≥ 9/2 => P ≥ 3/2 (đpcm) ; dấu "=" khi a = b = c 
- - - 
cách khác: P = a/(b+c) + b/(c+a) + c/(a+b) 
M = b/(b+c) + c/(c+a) + a/(a+b) 
N = c/(b+c) + a/(c+a) + b/(a+b) 

Thấy: M + N = 3 
P + M = (a+b)/(b+c) + (b+c)/(c+a) + (c+a)/(a+b) ≥ 3 (cô si cho 3 số) 
P + N = (a+c)/(b+c) + (b+a)/(c+a) + (c+b)/(a+b) ≥ 3 (cô si) 

=> 2P + M + N ≥ 6 => 2P + 3 ≥ 6 => P ≥ 3/2 (đpcm) ; đẳng thức khi a = b = c
-------------- 
b) ad bđt Bunhia: 1² = [2.(2x) + 1.y]² ≤ (2²+1²)(4x²+y²) => 4x² + y² ≥ 1/5 (đpcm) 
dấu "=" khi 2x/2 = y/1 và 4x+y = 1 <=> x = y = 1/5 
- - - 
Có thể không cần Bunhia, ad bđt a² + b² ≥ 2ab (*) 
(*) quá hiển nhiên từ (a-b)² ≥ 0 
x² + 1/25 ≥ 2x/5 <=> 4x² ≥ 8x/5 - 4/25 (1*) 
y² + 1/25 ≥ 2y/5 <=> y² ≥ 2y/5 - 1/25 (2*) 

lấy (1*)+(2*) => 4x²+y² ≥ 8x/5+2y/5 - 4/25 - 1/25 = 2(4x+y)/5 - 5/25 = 1/5 (đpcm) 
dấu "=" khi x = y = 1/5 

Bình luận (0)
Tuyển Trần Thị
Xem chi tiết
saadaa
Xem chi tiết
Hoàng Lê Bảo Ngọc
16 tháng 8 2016 lúc 14:45

Ta có : \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-\left(\frac{a}{b}+\frac{b}{c}\right)=\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{c}\right)\ge\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\)Cần chứng minh \(\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}\right)-2\left(\frac{a}{b}+\frac{b}{c}\right)+2\ge0\). Điều này tương đương với : 

\(\left(\frac{a}{b}-1\right)^2+\left(\frac{b}{c}-1\right)^2\ge0\) (luôn đúng)

Làm tương tự với các lần tách còn lại 

Bình luận (0)
Phan Hằng Giang
Xem chi tiết
Kiệt Nguyễn
17 tháng 7 2020 lúc 9:17

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 7 2020 lúc 11:03

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid_new zZz
17 tháng 7 2020 lúc 11:18

Đọc tài liệu thầy Công Lợi rồi đào lên gáy làm gì thế em :)

By AM - GM inequalities we have:

\(\left(\frac{a}{a+b}\right)^2+\frac{1}{4}\ge\frac{a}{a+b}\)

\(\left(\frac{b}{b+c}\right)^2+\frac{1}{4}\ge\frac{b}{b+c}\)

\(\left(\frac{c}{c+a}\right)^2+\frac{1}{4}\ge\frac{c}{c+a}\)

So now:

\(LHS\ge\frac{a}{a+b}+\frac{b}{b+c}+\frac{4c}{c+a}=\frac{1}{1+\frac{b}{a}}+\frac{1}{1+\frac{c}{b}}+\frac{4}{1+\frac{a}{c}}\)

Lemma:\(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}};xy\ge1\)

Then:\(LHS\ge\frac{2}{1+\sqrt{\frac{b}{a}\cdot\frac{c}{b}}}+\frac{4}{1+\frac{a}{c}}=\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\)

We need prove that:

\(\frac{2}{1+\sqrt{\frac{c}{a}}}+\frac{4}{1+\frac{a}{c}}\ge3\)

Biến đổi tương đương là ra

Bình luận (0)
 Khách vãng lai đã xóa