phân tích đa thức thành nhân tử chung: (a^3-b^3)+(a-b)^2
Phân tích các đa thức sau thành phân tử pp đặt nhân tử chung 2ab^2 - a^2b - b^3
\(2ab^2-a^2b-b^3=b^2\left(2a-a^2-b\right)\)
\(2ab^2-a^2b-b^3\)
\(=-b\left(a^2-2ab+b^2\right)\)
\(=-b\left(a-b\right)^2\)
-(2ab2 - a2b - b3)
= b(-2ab + a2 + b2)
= b(a2 - 2ab + b2)
= b(a - b)2
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử chung : a^3 + b^3 - 3ab
phân tích đa thức thành nhân tử bằng cácphương pháp đã học(đặt nhân tử chung; dùng những hằng đẳng thức; nhóm nhiều hạng tử ; đa thức bậc 2)
a, x^3 - 2x + 4
b, x^3 - 4x^2 + 12x - 27
c, x^2 - 2x^2 + 2x + 1
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
1, 3a-3b+a-2ab+b^2
2, a^3-a^2b-ab^2-b^3
3, a^3+a^2-4a-4
4, x^2y^2+1-x^2-y^2
\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1
Ta có lược đồ sau :
1 | 1 | -4 | -4 | |
-1 | 1 | 0 | -4 | 0 |
Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)
phân tích đa thức sau thành nhân tử (a^2-b^2)+(a^3+b^3)-a^2b^2(a+b)
\(\left(a^2-b^2\right)+\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b\right)+\left(a+b\right)\left(a^2-ab+b^2\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b+a^2+b^2-ab-a^2b^2\right)\)
\(=\left(a+b\right)\left[b^2\left(1-a^2\right)+a\left(1+a\right)-b.\left(1+a\right)\right]\)
\(=\left(a+b\right)\left(a+1\right)\left(b^2+a-b\right)\)
Phân tích đa thức thành nhân tử
a(b - c)^2 + b(c -a)^2 + c(a - b)^2 - a^3 - b^3 – c^3 + 4abc
bài 1 tìm x bt
a) 9 (4x+3)^2=16(3x-5)^2
b) (x-3)^2=4x^2-20x+25
bài 2 phân tích đa thức sau thành nhân tử chung
a) (a-b) . (a^2-c^2)-(a-c) (a^2-b^2)
b) -x^8-4x^4+5
Bài 1.
\(a\Big) 9(4x+3)^2=16(3x-5)^2\\\Leftrightarrow 9[(4x)^2+2\cdot 4x\cdot3+3^2]=16[(3x)^2-2\cdot3x\cdot5+5^2]\\\Leftrightarrow9(16x^2+24x+9)=16(9x^2-30x+25)\\\Leftrightarrow 144x^2+216x+81=144x^2-480x+400\\\Leftrightarrow (144x^2-144x^2)+(216x+480x)=400-81\\\Leftrightarrow 696x=319\\\Leftrightarrow x=\dfrac{11}{24}\\Vậy:x=\dfrac{11}{24}\\---\)
\(b\Big)(x-3)^2=4x^2-20x+25\\\Leftrightarrow(x-3)^2=(2x)^2-2\cdot2x\cdot5+5^2\\\Leftrightarrow(x-3)^2=(2x-5)^2\\\Leftrightarrow (x-3)^2-(2x-5)^2=0\\\Leftrightarrow (x-3-2x+5)(x-3+2x-5)=0\\\Leftrightarrow (-x+2)(3x-8)=0\\\Leftrightarrow \left[\begin{array}{} -x+2=0\\ 3x-8=0 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} -x=-2\\ 3x=8 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} x=2\\ x=\dfrac{8}{3} \end{array} \right.\\Vậy:...\)
Phân tích đa thức thành nhân tử
( a+b)^3-3ab×(a+b)
\(\left(a+b\right)^3-3ab.\left(a+b\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]=\left(a+b\right)\left(a^2+b^2-ab\right)\)
`(a+b)^3-3ab(a+b)`
`=(a+b)(a+b)^2-3ab(a+b)`
`=(a+b)[(a+b)^2-3ab]`
`=(a+b)(a^2+2ab+b^2-3ab)`
`=(a+b)(a^2-ab+b^2)`
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)