Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2021 lúc 20:42

1) Ta có: \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}-1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)

\(=\dfrac{2x-6\sqrt{x}+x+2\sqrt{x}-3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+9\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\sqrt{x}-2}{\sqrt{x}-3}\)

Sửa đề: \(x=7+4\sqrt{3}\)

Thay \(x=7+4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{3\left(2+\sqrt{3}\right)-2}{2+\sqrt{3}-3}=\dfrac{6+3\sqrt{3}-2}{\sqrt{3}-1}\)

\(=\dfrac{4+3\sqrt{3}}{\sqrt{3}-1}=\dfrac{13+7\sqrt{3}}{2}\)

Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 0:01

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:51

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+6\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)

1122
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:24

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

1122
4 tháng 8 2023 lúc 10:09
Ngọc Mai
Xem chi tiết
Nhan Thanh
9 tháng 7 2021 lúc 20:43

a) Rút gọn P

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)\(=\dfrac{\left(-5\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) Tìm GTLN

\(P=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{17-5\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)

Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow P=\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{max}=\dfrac{2}{3}\) khi \(x=0\)

 

 

Xem chi tiết
Phongg
21 tháng 12 2023 lúc 16:26

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

Nguyễn Lê Phước Thịnh
21 tháng 12 2023 lúc 17:52

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

Trần Vũ Minh Huy
21 tháng 12 2023 lúc 18:12

Bài 3

a)\(\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\)

Vậy PT có nghiệm x=6

b)\(\sqrt{4x^2+4x+1}-11=5\Leftrightarrow\sqrt{\left(2x+1\right)^2}=16\Leftrightarrow2x+1=16hoặc2x+1=-16\)

+)TH1: \(2x+1=16\Leftrightarrow x=\dfrac{15}{2}\Leftrightarrow x=7,5\)

+)TH2:\(2x+1=-16\Leftrightarrow x=\dfrac{17}{2}\Leftrightarrow x=8,5\)

Bài 4

a)\(C=1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\Leftrightarrow C=\dfrac{x-1}{\sqrt{x}}\left(\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\Leftrightarrow C=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\dfrac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\Leftrightarrow C=\dfrac{2x}{\sqrt{x}}\Leftrightarrow C=2\sqrt{x}\)

\(Vậy\) \(C=2\sqrt{x}\)

hilo
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2023 lúc 22:03

a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)

\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)

c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>căn x-3<0

=>0<x<9

⭐Hannie⭐
29 tháng 3 2023 lúc 12:16

`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)

\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)

\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)

\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)

\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)

\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

`b,`Ta có :

 \(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)

\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)

\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)

\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)

\(M=\dfrac{6+9\sqrt{2}}{2}\)

`c,`  Để `M<1` Ta có :

 \(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)

\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)

\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )

\(\sqrt{x}< 3\)

\(x< 9\)

Đối chiếu ĐKXĐ ta có : `0<x<9`

 

 

Trần Bảo Châu
Xem chi tiết
Hà Thị Thế
25 tháng 6 2018 lúc 22:34

a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)

xog xét 2 TH

b, bình phương 

2

GTLN : 2 dấu = xra \(2\le x\le4\)

Trần Bảo Châu
27 tháng 6 2018 lúc 15:46

Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ

Nguyên Thảo Lương
Xem chi tiết
Nguyễn Cẩm Uyên
22 tháng 11 2021 lúc 20:02

undefined