Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Tài
Xem chi tiết
YangSu
10 tháng 3 2023 lúc 21:18

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

phan anh minh
Xem chi tiết
nguyen thi khanh hoa
21 tháng 9 2015 lúc 23:05

để (m-1)x^2-2(m+1)x+3(m-2)>0 với mọi x thuộc R thì

m-1>0 => m>1 (1)

và (m+1)^2-3(m-2)(m-1)<0 (2)

sau đó e giải phương trình 2 và đối chiếu điều kiện với phương trình 1 ta đc điều kiện của m

 

minh phon
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2023 lúc 22:37

- Với \(m=-1\) thỏa mãn

- Với \(m\ne-1\) ta có \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-4\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-1< m\le3\end{matrix}\right.\) \(\Rightarrow-1< m\le3\)

Kết hợp lại ta được \(-1\le m\le3\)

Nguyễn Xuân Tài
Xem chi tiết
YangSu
10 tháng 3 2023 lúc 21:32

\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)

\(\Leftrightarrow8m^2-20m-12< 0\)

\(KL:m\in\left(-1;3\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2018 lúc 8:50

Chọn D

Để 3x2- 2( m+1) x-2m2+3m-2 ≥ 0 với mọi x khi và chỉ khi:

∆’ = (m+1) 2+ 3( 2m2-3m+2) ≤ 0

Hay 7m2- 7m+7≤ 0 suy ra  bpt vô nghiệm

Vậy không có m thỏa mãn yêu cầu bài toán

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 16:13

\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)

- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)

- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

Trường Lê
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 10:14

Ta có : \(\left(m-1\right)x^2-2\left(m-2\right)x+2-m>0\)

\(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(2-m\right)\left(m-1\right)\)

\(=m^2-4m+4+m^2-m-2=2m^2-5m+2\)

TH1 : m - 1 =0 => m = 1

- Thay m = 1 vào BPT ta được : 2x + 1 > 0

=> BPT có nghiệm ( L )

TH2 : \(m\ne1\)

- Để BPT trên vô nghiệm với mọi x thuộcR \(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\le m\le2\\m< 1\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< 1\)

Vậy ...

 

 

 

Rosie
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 23:49

Δ=6^2-4*3*m=36-12m

Để BPT luôn đúng khi x>=0 thì 36-12m<0

=>12m>36

=>m>3

DuaHaupro1
Xem chi tiết
Trần Anh Hoàng
23 tháng 3 2022 lúc 11:47

f(x)=−2x2+(m+2)x+m−4≤0,∀x

⇔{a<0Δ<0

⇔{−2<0   ;  m2+12m−28<0

⇔−14<m<2

Nguyễn Việt Lâm
23 tháng 3 2022 lúc 11:47

\(f\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta=\left(m+2\right)^2+8\left(m-4\right)\le0\)

\(\Leftrightarrow m^2+12m-28\le0\)

\(\Rightarrow-14\le m\le2\)

Bình Trần Thị
Xem chi tiết
Nhật Minh
30 tháng 1 2016 lúc 9:51

\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2