Tìm m để 3x2 +(3-m)x +m -1 > 0, với mọi x thuộc R
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Tìm m để (m-1)x^2 - 2(m+1)x + 3(m-2) >0 với mọi x thuộc R
để (m-1)x^2-2(m+1)x+3(m-2)>0 với mọi x thuộc R thì
m-1>0 => m>1 (1)
và (m+1)^2-3(m-2)(m-1)<0 (2)
sau đó e giải phương trình 2 và đối chiếu điều kiện với phương trình 1 ta đc điều kiện của m
tìm giá trị m để (m+1)x^2-2(m+1)x+4>=0 với mọi x thuộc R
- Với \(m=-1\) thỏa mãn
- Với \(m\ne-1\) ta có \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-4\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(m-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-1< m\le3\end{matrix}\right.\) \(\Rightarrow-1< m\le3\)
Kết hợp lại ta được \(-1\le m\le3\)
Cho f(x)=(m+1)x2-2(m-1)x-m+4 tìm m để f(x)>0 với mọi x thuộc R
\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)
\(\Leftrightarrow8m^2-20m-12< 0\)
\(KL:m\in\left(-1;3\right)\)
Tìm m để 3x2- 2( m+1) x-2m2+3m-2 ≥ 0 với mọi x
A. m < 1
B. m > -1
C. m < -1
D. không có giá trị nào thỏa mãn
Chọn D
Để 3x2- 2( m+1) x-2m2+3m-2 ≥ 0 với mọi x khi và chỉ khi:
∆’ = (m+1) 2+ 3( 2m2-3m+2) ≤ 0
Hay 7m2- 7m+7≤ 0 suy ra bpt vô nghiệm
Vậy không có m thỏa mãn yêu cầu bài toán
Cho \(\left(m-1\right)x^3+2\left(m-1\right)x^2+mx\). Tìm tất cả các giá trị của m để f'(x)<0 với mọi x thuộc R
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
Tìm điều kiện của tham số m để (m-1)x^2-2(m-2)x+2-m>0 vô nghiệm với mọi x thuộc R
Ta có : \(\left(m-1\right)x^2-2\left(m-2\right)x+2-m>0\)
Có \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(2-m\right)\left(m-1\right)\)
\(=m^2-4m+4+m^2-m-2=2m^2-5m+2\)
TH1 : m - 1 =0 => m = 1
- Thay m = 1 vào BPT ta được : 2x + 1 > 0
=> BPT có nghiệm ( L )
TH2 : \(m\ne1\)
- Để BPT trên vô nghiệm với mọi x thuộcR \(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\le m\le2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{2}\le m< 1\)
Vậy ...
Tìm m để : 3x2 + 6x + m ≥ 0 với mọi x ϵ [0;+∞)
Δ=6^2-4*3*m=36-12m
Để BPT luôn đúng khi x>=0 thì 36-12m<0
=>12m>36
=>m>3
Tìm m để f(x)= -2x2+(m+2)x+m-4\(\le\)0, với mọi x thuộc R
f(x)=−2x2+(m+2)x+m−4≤0,∀x
⇔{a<0Δ<0
⇔{−2<0 ; m2+12m−28<0
⇔−14<m<2
\(f\left(x\right)\le0;\forall x\in R\)
\(\Leftrightarrow\Delta=\left(m+2\right)^2+8\left(m-4\right)\le0\)
\(\Leftrightarrow m^2+12m-28\le0\)
\(\Rightarrow-14\le m\le2\)
tìm các giá trị của m để bất phương trình : (m - 1)x2 - 2(m + 1)x + 3(m - 2) > 0 nghiệm đúng với mọi x thuộc R
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2