Tìm k thuộc N , biết:
\(x^3y^5+3x^3y^5+5x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
giúp với mọi người . Tha thanhk you.
tìm k thuộc N biết x^3y^5 + 3x^3y^5 + 5x^3y^5+.......+(2k-1)x^3y^5=3249x^3y^5
Tìm k thuộc N biết: x^3y^5 + 3x^3y^5 + 5x^3y^5 + ... + (2k - 1)x^3y^5 = 3249x^3y
Tim k thuoc N biet, \(x^3y^5+3x^3y^5+.....+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(x^3y^5+3x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(\Leftrightarrow x^3y^5\left[1+2+3+...+\left(2k-1\right)\right]=3249x^3y^5\)
\(\Leftrightarrow1+3+5+...+\left(2k-1\right)=3249\)
\(\Leftrightarrow\frac{\left[\left(2k-1\right)+1\right].\left(\frac{\left(2k-1\right)-1}{2}+1\right)}{2}=3249\)
\(\Leftrightarrow\frac{2k.\left(k-1+1\right)}{2}=3249\)
\(\Leftrightarrow\frac{2k^2}{2}=3249\)
\(\Leftrightarrow k^2=3249=57^2\) ( ko xét k = - 57 vì theo quy luật thi k luôn dương )
\(\Rightarrow k=57\)
\(x^3y^5+3x^3y^5+5x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
Tìm k
Ta có:\(x^3y^5+3x^3y^5+5x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(x^3y^5\left(1+3+5+...+2k-1\right)=3249x^3y^5\)
\(\Rightarrow1+3+5+...+2k-1=3249\)
\(\Rightarrow\frac{\left(\frac{2k-1-1}{2}+1\right).\left(2k-1+1\right)}{2}=3249\)
\(\Rightarrow\frac{k.2k}{2}=3249\)
\(\Rightarrow k^2=3249\)
\(\Rightarrow k=57\) hoặc k=-57
x^3y^5 + 3x^3y^5 + 5x^3y^5 + ... + (2k - 1)x^3y^5 = 3249x^3y
k=?
giai chi tiet
Tìm k thuộc N biết x^3y^5 + 3x^3y^5 + ... + 92k-1)x^3y^5 = 324.9x^3y^5 . Vậy k =
Tìm n thuộc N biết :
a) \(\left(7x^2y^3\right).\left(x^ny^5\right)=7x^3y^8\)
b) \(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y^4\)
c)
thức hiên phép nhân:
a)\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)
b)\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)
Tìm đa thức M:Cho (-1/3x^3y^3+5x^2y^2-5/2xy)-M= xy-1/6x^3y^3-3x^2y^2 Mọi người giúp mình với................