Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Nguyễn Tuấn
Xem chi tiết
Kim Chi Pham
Xem chi tiết
HT2k02
4 tháng 4 2021 lúc 12:24

Ta thấy tam giác ACD và tam giác BCD có chung đáy cd , chiều cao bằng nhau và bằng chiều cao hình thang ABCD . Nên Sacd=Sbcd. Suy ra Saod=Sboc

b) cho diện tích abo=a thì chắc mình mới làm được nhé....

Xét tam giác aob và cod có

aob=cod (đối đỉnh), abo=cdo(so le trong do ab//cd)

Suy ra 2 tam giác này đồng dạng

=> (Ao/oc)^2=Saob/Scod=a/b

Xét tam giác aod và cdo chung đường cao hạ từ d xuống ac. Suy ra Saod/Scod=ao/co= căn (a/b)

=> Saod= căn (a/b) * b= căn (ab)

 

 

 

Trần gia linh
Xem chi tiết
selena kai
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 22:18

Xét ΔADC có 

O là trung điểm của AC

E là trung điểm của AD

Do đó: OE là đường trung bình của ΔADC

Suy ra: OE//DF và OE=DF

hay OEDF là hình bình hành

Herera Scobion
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 22:02

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

Đỗ Thị Linh Hương
Xem chi tiết
Mai Trung Kiên
Xem chi tiết
Lê Hải Yến
10 tháng 10 2021 lúc 13:15

cái lon cc

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2017 lúc 9:42

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

Ngọc Phùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 9:16

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành