Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Phùng

. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F, vẽ đường thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành

Nguyễn Lê Phước Thịnh
27 tháng 11 2023 lúc 9:16

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
nguyễn hoàng nam
Xem chi tiết
wattif
Xem chi tiết
Tạ Bảo Ngọc
Xem chi tiết
Tạ Bảo Ngọc
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Trần Tùng Dương
Xem chi tiết
Xem chi tiết
Trương Xuân Quyên
Xem chi tiết