CMR:
\(\frac{a^2}{a^4+1}\le\frac{1}{2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
a) cho x,y dương. CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
b) cho a+b+c=1 CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)
\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)
Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
cmr \(\frac{1}{3}\le\frac{a^2-2a+4}{^{a^2+2a+4}}\le3\)
cho a,b,c >0 va abc=1.
CMR \(\frac{1}{ab+a+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
bn tham khảo câu hỏi tương tự nha!
hok tốt!
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)
Mà \(ab+bc+ca=3\). Do đó \(ab\ge1\)
Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)
Và \(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)
\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)
BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)
và \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
Nên \(a+b+c\ge3\ge3abc\)
Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được
\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Do đó ta được
\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự ta được
\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)
Cộng theo vế các BĐT trên ta được
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM
ĐẲng thức xảy ra khi và chỉ khi a = b = c >0
Bài 2:
Áp dụng BĐT AM-GM:
\(a^2+2b^2+c^2=(a^2+b^2)+(a^2+c^2)\geq 2\sqrt{(a^2+b^2)(a^2+c^2)}\geq 2\sqrt{\frac{(a+b)^2}{2}.\frac{(a+c)^2}{2}}=(a+b)(a+c)\)
\(\Rightarrow \frac{ab^2}{a^2+2b^2+c^2}\leq \frac{ab^2}{(a+b)(a+c)}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \sum \frac{ab^2}{(a+b)(a+c)}=\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\)
Ta cần CM: \(\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\leq \frac{a+b+c}{4}\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)
\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)[(a+b+c)(ab+bc+ac)-abc]\)
\(\Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2)\leq (a^3b+ab^3)+(bc^3+b^3c)+(ca^3+c^3a)\)
(dễ thấy luôn đúng do theo BĐT AM-GM)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Cho 3 số dương a,b,c . CMR
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\le\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v
\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)
tương tự 2 cái kia cộng lại t có bđt cần cm
\(\frac{a}{b+c}+\frac{b}{a+c}+\)\(\frac{c}{a+b}\ge\frac{3}{2}\)
Đặt b + c = x
a + c = y
a + b = z
Có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: = \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}\)\(+\frac{x+y-z}{2z}\)
= \(\frac{z+y}{2x}-\frac{x}{2x}\)\(+\frac{x+z}{2y}-\frac{y}{2y}+\)\(\frac{x+y}{2z}-\frac{z}{2z}\)
= \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}\)\(+\frac{x+y}{2z}-\frac{1}{2}\)
= \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\)\(\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(-\frac{3}{2}\)
Ta có : \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) ( đpcm )
cho a,b,c>0 thỏa mãn a+b+c=1
Cmr: \(\frac{1}{a+b^2}+\frac{1}{b+c^2}+\frac{1}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c >0 và ab+bc+ca \(\le\)3
CMR:
\(\frac{1}{a^3+b^3+4}+\frac{1}{b^3+c^3+4}+\frac{1}{a^3+c^3+4}\le\frac{1}{2}\)