Câu 6:Phương trình vô nghiệm khi
Phương trình : m² (x+2) -6 = 4m+x vô nghiệm khi?
\(m^2\left(x+2\right)-6=4m+x\)
\(\Leftrightarrow m^2x+2m^2-6-4m-x=0\)
\(\Leftrightarrow\left(m^2-1\right)x=6+4m-2m^2\)
PT vô nghiệm
\(\hept{\begin{cases}m^2-1=0\\6+4m-2m^2\ne0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
\(\hept{\begin{cases}m\ne3\\m\ne-1\end{cases}\Rightarrow m=1}\)
Các câu sau đây,có bao nhiêu câu là mệnh đề?
(1) Ở đây đẹp quá!
(2) Phương trình x 2 − 3x + 1 = 0 vô nghiệm
(3) 16 không là số nguyên tố
(4) Hai phương trình x 2 − 4x + 3 = 0 và x 2 − x + 3 +1 = 0 có nghiệm chung.
(5) Số π có lớn hơn 3 hay không?
(6) Italia vô địch Worldcup 2006
(7) Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.
(8) Một tứ giác là hình thoi khi và chỉ khi nó có hai đường chéo vuông góc với nhau
A. 4
B. 6
C. 7
D. 5
Đáp án B
Câu (1) và (5) không là mệnh đề (vì là câu cảm thán, câu hỏi)
Các câu (3), (4), (6) là những mệnh đề đúng
Câu (2), (7) và (8) là những mệnh đề sai.
Vậy có 6 mệnh đề.
Phương trình (m^2 +5m+6)x+m+3=0 vô nghiệm khi x=?
\(f\left(x,m\right)=\left(m^2+5m+6\right)x+\left(m+3\right)\)
xét f(m)\(f\left(m\right)=\left(m+2\right)\left(m+3\right)x+\left(m+3\right)=\left(m+3\right)\left[\left(m+2\right)x+1\right]\)
f(-3)=0 với mọi x => không có giá trị nào của x thỏa mãn đề bài
Câu 3: Phương trình : 2013x2 – 2015x + 2 = 0 có 2 nghiệm là:
A. x1 = -1 và x2 = -2/2013 B. x1 = 1 và x2 = 2/2013
C. Phương trình vô nghiệm D. Cả ba đáp án trên đều sai.
Câu 4: Cho phương trình x2 + 3x + 1 = 0, khi đó tổng các nghiệm bằng
A. 3 B. - 3 C. 1 D. -1
Câu 5: Phương trình nào sau đây vô nghiệm:
A. 4x2 - 5x + 1 = 0 B. 2x2 + x – 1 = 0 C. 3x2 + x + 2 = 0 D. x2 + x – 1 = 0
Câu 6: Phương trình x2 - 7x + 6 = 0,khi đó tích các nghiệm bằng
A. -7 B. 6 C. - 6 D. 7
Câu 3:
$\Delta=2015^2-4.2013.2=2011^2$
Do đó pt có 2 nghiệm:
$x_1=\frac{2015+2011}{2.2013}=1$
$x_2=\frac{2015-2011}{2.2013}=\frac{2}{2013}$
Đáp án B.
Câu 4:
Theo định lý Viet, tổng các nghiệm của pt là:
$S=\frac{-b}{a}=\frac{-3}{1}=-3$
Đáp án B.
Câu 5:
PT (C) có $\Delta'=1-4.3.2<0$ nên PT này vô nghiệm
Đáp án C.
phương trình (m^2+5m+6)x+m+3=0 vô nghiệm khi m=?
cho phương trình \(m^2\)x +6= 4x+3m a) giải pt khi m=3 b) tìm m để pt có nghiệm x= 1,5 c) tìm m để pt có nghiệm vô nghiệm vô số nghiệm d) tìm m nguyên để pt trên có nghiệm
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
cho hệ phương trình \(\left\{{}\begin{matrix}4x-my-m-6=0\\mx-y-2m=0\end{matrix}\right.\)
tìm m để : a. hệ phương trình vô nghiệm
b. hệ phương trình có nghiệm duy nhất
c. hệ phương trình có vô số nghiệm
Cho phương trình ( m 2 + 1 ) ( x 2 - 3 x + 2 ) 2011 - 3 x + 4 = 0
Các phát biểu :
(1) Phương trình trên vô nghiệm vơi mọi m
(2) Khi m = 1 phương trình trên có nghiệm
(3) Không tồn tại m để phương trình trên vô nghiệm
Chọn đáp án đúng:
A. (1) đúng
B. (2),(3) Đúng
C. A, B đều đúng
D. Tất cả đều sai.
Khi giải một hệ phương trình bậc nhất hai ẩn, ta biến đổi hệ phương trình đó để được một hệ phương trình mới tương đương , trong đó có một phương trình một ẩn. Có thể nói gì về số nghiệm của hệ đã cho nếu phương trình một ẩn đó:
a) Vô nghiệm? ; b) Có vô số nghiệm?
a) Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
b) Hệ đã cho có vô số nghiệm.
2. Đối với phương trình bậc hai a x 2 + b x + c = 0 (a ≠ 0), hãy viết công thức tính Δ, Δ'.
Khi nào thì phương trình vô nghiệm?
Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.
Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.
Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt?