Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bình Trần Thị
Xem chi tiết
ngonhuminh
15 tháng 2 2017 lúc 23:31

\(Lim=\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)

\(lim_{n\rightarrow+\infty}=\frac{\sqrt{\frac{3}{n}+\frac{2}{n^2}}+\sqrt{\frac{2}{n}+\frac{1}{n^2}}}{1+\frac{1}{n}}=\frac{0+0}{1+0}=0\)

Bình Trần Thị
Xem chi tiết
Lan Vy
13 tháng 3 2017 lúc 21:02

\(=lim\dfrac{\left(\sqrt{3n+2}+\sqrt{2n+1}\right)}{3n+2-\left(2n+1\right)}\)

\(=lim\dfrac{\left(\sqrt{3n+2}+\sqrt{2n+1}\right)}{n+1}\)

\(=lim\dfrac{n[\left(\sqrt{\dfrac{3}{n}+\dfrac{2}{n^2}}\right)+\left(\sqrt{\dfrac{2}{n}+\dfrac{1}{n^2}}\right)]}{n\left(1+\dfrac{1}{n^2}\right)}\)

*\(lim[\left(\sqrt{\dfrac{3}{n}+\dfrac{2}{n^2}}\right)+\left(\sqrt{\dfrac{2}{n}+\dfrac{1}{n^2}}\right)]=0\)

*\(lim\left(1+\dfrac{1}{n^2}\right)=1\)

Vậy: \(lim\dfrac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=0\)

Bình Trần Thị
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Ami Mizuno
11 tháng 2 2022 lúc 7:27

a. ĐKXĐ: \(n\ge0\)

\(lim_{n\rightarrow0}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\dfrac{\sqrt{2.0+1}}{\sqrt{8.0}+1}=1\)

\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim_{n\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{1}{2}\)

b. ĐKXĐ: \(\left\{{}\begin{matrix}n\ne0\\n\le\dfrac{-1-\sqrt{21}}{2}\\n\ge\dfrac{-1+\sqrt{21}}{2}\end{matrix}\right.\)

\(lim_{n\rightarrow+\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow+\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-2\)

\(lim_{n\rightarrow-\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow-\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-1\)

Núi non tình yêu thuần k...
Xem chi tiết
Hồng Phúc
18 tháng 2 2022 lúc 0:56

a, \(lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{n}\right)}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

Hồng Phúc
18 tháng 2 2022 lúc 0:58

b, \(lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\)

\(=lim\left(\dfrac{3}{2}-\dfrac{\sqrt{n^2+n-5}}{2n}\right)\)

\(=lim\left(\dfrac{3}{2}-\dfrac{n\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{2n}\right)=\dfrac{3}{2}-\dfrac{1}{2}=1\)

Núi non tình yêu thuần k...
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 21:46

\(\lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{\sqrt{n}}\right)}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

\(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\lim\dfrac{n\left(3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}\right)}{-2n}=\lim\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=\dfrac{3+1}{-2}=-2\)

Chuột yêu Gạo
Xem chi tiết
Minh Hiếu
12 tháng 2 2022 lúc 20:17

\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)

\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)

\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

Nguyễn Việt Lâm
12 tháng 2 2022 lúc 20:31

\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)

\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 2 2022 lúc 8:30

Câu a:

undefined

Nguyễn Việt Lâm
12 tháng 2 2022 lúc 21:01

\(\lim\dfrac{n\sqrt{1+2+...+2n}}{3n^2+n-2}=\lim\dfrac{n\sqrt{\dfrac{2n\left(2n+1\right)}{2}}}{3n^2+n-2}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{3+\dfrac{1}{n}-\dfrac{2}{n^2}}=\dfrac{\sqrt{2}}{3}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 0:43

\(a=\lim\dfrac{5n\left(n+\sqrt{n^2-n-1}\right)}{n+1}=\lim\dfrac{5\left(n+\sqrt{n^2-n-1}\right)}{1+\dfrac{1}{n}}=\dfrac{+\infty}{1}=+\infty\)

\(b=\lim\dfrac{\sqrt{\dfrac{1}{n}+\sqrt{\dfrac{1}{n^3}+\dfrac{1}{n^4}}}}{1-\dfrac{1}{\sqrt{n}}}=\dfrac{0}{1}=0\)

\(c=\lim\dfrac{\sqrt{2n^2-1+\dfrac{7}{n^2}}}{3+\dfrac{5}{n}}=\dfrac{+\infty}{3}=+\infty\)

\(d=\lim\dfrac{\sqrt{3+\dfrac{2}{n}}-1}{3-\dfrac{2}{n}}=\dfrac{\sqrt{3}-1}{3}\)