tìm giá trị nhỏ nhất của hàm số y=sin^2x-4sinx-5
Tìm giá trị lớn nhất của hàm số \(y=sin^2x-4sinx-5\)
Tìm giá trị lớn nhất của hàm số \(y=f\left(x\right)=sin^2x+4sinx-5\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
A. \(-5\)
B. \(5\)
C. \(1\)
D. \(0\)
\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)
\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)
\(f'\left(x\right)=0\)
=>\(cosx\left(sinx+2\right)=0\)
=>\(cosx=0\)
=>\(x=\dfrac{\Omega}{2}+k\Omega\)
mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)
nên \(x=\dfrac{\Omega}{2}\)
\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)
=1+4-5=0
\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)
=>Chọn D
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số y = 3 - 4 sin x
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sqrt{5\sin^2x+1}+\sqrt{5\cos^2x+1}\) ?
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 1 - 8sin^2x cos^2x + 2 sin^4 2x
Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)
\(y=1-8sin^22x.cos^22x+2sin^42x\)
\(=1-2sin^24x+2sin^42x\)
\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)
\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)
Giá trị nhỏ nhất của hàm số y = sin2 x- 4sinx – 5 là
A. – 20
B. – 8
C.0
D.9
Ta có : y = sin2x – 4sinx – 5= (sinx- 2)2 - 9
Vậy giá trị nhỏ nhất của hàm số là - 8
Đáp án B
Tìm giá trị nhỏ nhất của hàm số y = 2 cos 2 x + 4 sin x trên đoạn 0 ; π 2
A. m i n 0 ; π 2 y = 4 - 2
B. m i n 0 ; π 2 y = 2 2
C. m i n 0 ; π 2 y = 2
D. m i n 0 ; π 2 y = 0
Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= sin^2x +2sinx
Đặt \(sinx=t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^2+2t\)
Xét hàm \(y=f\left(t\right)=t^2+2t\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=-1\in\left[-1;1\right]\)
\(f\left(-1\right)=-1\) ; \(f\left(1\right)=3\)
\(\Rightarrow y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
Giá trị nhỏ nhất của hàm số y: \(sin^2x-4sinx-5\) là ?
\(y=\left(sinx+1\right)\left(sinx-5\right)\)
Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}sinx+1\ge0\\sinx-5< 0\end{matrix}\right.\)
\(\Rightarrow y\le0\Rightarrow y_{max}=0\) khi \(sinx=-1\)
\(y=sin^2x-4sinx+3-8=\left(1-sinx\right)\left(3-sinx\right)-8\)
Do \(-1\le sinx\le1\Rightarrow\left\{{}\begin{matrix}1-sinx\ge0\\3-sinx>0\end{matrix}\right.\) \(\Rightarrow\left(1-sinx\right)\left(3-sinx\right)\ge0\)
\(\Rightarrow y_{min}=-8\) khi \(sinx=1\)
\(y=\frac{1}{2}-\frac{1}{2}cos2x+cos2x+sin2x=\frac{1}{2}+\frac{1}{2}\left(cos2x+2sin2x\right)\)
\(=\frac{1}{2}+\frac{\sqrt{5}}{2}\left(\frac{1}{\sqrt{5}}cos2x+\frac{2}{\sqrt{5}}sin2x\right)=\frac{1}{2}+\frac{\sqrt{5}}{2}sin\left(2x+a\right)\)
Tới đây biện luận \(-1\le sin\left(2x+a\right)\le1\Rightarrow\) min, max y
Có 2 cách cơ bản: đưa về dạng \(y=a+b.sin^c\left[f\left(x\right)\right]\) (hoặc cos)
Hoặc đưa về dạng hàm đa thức bậc 2-3 của sin và cos sau đó biện luận giống như tìm min max của hàm đa thức trên 1 đoạn nào đó (ví dụ \(y=-sin^3x+sin^2x+1\) thì nó chính là hàm \(f\left(t\right)=-t^3+t^2+1\) với \(t\in\left[-1;1\right]\)
Cách đầu thì giống như bài ví dụ bạn hỏi đó
Hoặc ví dụ thế này: \(y=cos2x+cos^2x-1\)
\(=2cos^2x-1+cos^2x-1=3cos^2x-2\)
Tới đây biện luận dễ dàng