Chứng minh bất đẳng thức : x2+y2-xy\(\ge\)x+y-1
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Chứng minh bất đẳng thức
x2+y2-xy>= x+y-1
Nhân hai vế của đẳng thức với 2 :
2x^2 + 2y^2 - 2xy = (x^2 - 2xy + y^2)+y^2 + x^2 = (x - y)^2 + x^2 + y^2 >= 0
Đẳng thức xảy ra khi x = y = 0
Cả hai vế của đẳng thức nhân 2
2x2 + 2y2 - 2xy = ( x2 - 2xy + y2 ) + y2 + x2 = ( x - y )2 + x2 + y2 \(\ge\)0
Vậy đẳng thức xảy ra khi x = y = 0
k cho mình nha mọi người
BĐT tương đương vs:
\(2x^2+2y^2-2xy\ge2x+2y-2\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
\(\text{BĐT đã được chứng minh}\)
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
Chứng minh bất đẳng thức: \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\) với x,y \(\ge\) 1
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
chứng minh bất đẳng thức\(\frac{\text{(x2+y2)2 }}{\left(x-y\right)^2}\)>=8
CMR : a) Có thể tìm được số có dạng 199119911991...19910...0 chia hết cho 1992
Help
chứng minh bất đẳng thức:
\(x^2+y^2+z^2\ge xy+yz+xz\)
(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0
=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0
=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0
=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz
=>x^2+y^2+z^2 >= xy+yz+xz
nhần đổi của về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá
giả sử x^2+y^2+z^2>/xy+yz+xz
<=> 2x^2+2y^2+2x^2>/ 2xy+2yz+2xz (nhân 2 vế cho 2)
<=> (x^2-2xy+y^2)+(x^2-2xz+z^2)+(y^2-2yz+z^2)>/0
<=> (x-y)^2+(x-z)^2+(y-z)^2>/0 (đúng)
vậy x^2+y^2+z^2>/xy+yz+xz
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
CMR : các bất đẳng thức sau T/M với Mọi
x,y x2 + xy + y2 + 1 >0
Giải chi tiết cho mik nha các bạn!!! Thask Nhìu!!! Áp dụng hằng đẳng thức nhá!!!