Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh nguyễn
Xem chi tiết

a: Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

\(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)

Do đó: \(\widehat{ABC}=\widehat{ECN}\)

Xét ΔMBD vuông tại D và ΔNCE vuông tại E có

BD=CE

\(\widehat{MBD}=\widehat{NCE}\)

Do đó: ΔMBD=ΔNCE

=>DM=EN

b: Ta có: DM\(\perp\)BC

EN\(\perp\)BC

Do đó: DM//EN

Xét ΔIDM vuông tại D và ΔIEN vuông tại E có

MD=EN

\(\widehat{MDI}=\widehat{ENC}\)(hai góc so le trong, DM//EN)

Do đó: ΔIDM=ΔIEN

=>IM=IN

=>I là trung điểm của MN

 

Nguyễn Thị Hải Yến
Xem chi tiết
Bình Trần
Xem chi tiết
An Hạ
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Hồng Phúc
3 tháng 9 2021 lúc 8:38

MN là đường trung bình tam giác.

\(\Rightarrow MN=\dfrac{1}{2}BC=5\left(cm\right)\)

Trần Khánh Huyền
Xem chi tiết
Hồng Phúc
3 tháng 9 2021 lúc 8:40

M là trung điểm AB, MK song song BC.

\(\Rightarrow\) MK đi qua trung điểm AI.

hay K là trung điểm AI.

Trần Khánh Huyền
Xem chi tiết
Hồng Phúc
3 tháng 9 2021 lúc 8:50

Kẻ MH song song với BD.

\(\Rightarrow H\) là trung điểm CD.

I là trung điểm AM, ID song song với MH.

\(\Rightarrow D\) là trung điểm AH.

\(\Rightarrow AD=DH=CH=\dfrac{1}{2}DC\)

Nguyễn Thị Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2022 lúc 19:18

Đề sai rồi bạn

Dương Hoàng Nam
Xem chi tiết
Minh Hiếu
25 tháng 9 2021 lúc 17:35

1) \(\sqrt{2x-5}=7\)

\(\left(\sqrt{2x-5}\right)^2=7^2\)

\(2x-5=49\)

\(2x=54\)

\(x=27\)

2) \(3+\sqrt{x-2}=4\)

\(\sqrt{x-2}=1\)

\(\left(\sqrt{x-2}\right)^2=1^2\)

\(x-2=1\)

\(x=3\)

Lấp La Lấp Lánh
25 tháng 9 2021 lúc 17:38

1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)

\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)

2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)

3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

6) \(ĐK:x\ge-2\)

 \(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

7) \(ĐK:x\ge-1\)

\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)

Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 17:43

\(3,\sqrt{x^2-2x+1}=1\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=1\\ \Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\left(x\ge1\right)\\x-1=-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(4,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\\ \Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\left(x\ge2\right)\\x-2=-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

\(5,ĐK:x\in R\\ PT\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\1-2x=x+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(6,ĐK:x\ge-2\\ PT\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\Leftrightarrow x+2=x+7\Leftrightarrow0x=5\Leftrightarrow x\in\varnothing\)

\(7,ĐK:x\ge-1\\ PT\Leftrightarrow5\sqrt{x+2}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{x+2}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+1}\\ \Leftrightarrow x+2=x+1\\ \Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)