TÌM X
3X-\(\left|2x+1\right|\)=2
Tìm x: \(\left(3x-1\right)^3-2\left(2x-3\right)^2-3\left(x-2\right)\left(3-x\right)=\left(1+3x\right)^3-2\left(1+3x\right)^2\)
phân tích theo hằng đẳng thức rồi rút gọn là ra thôi bạn
Tìm x: \(\left(2x-1\right)^3-3\left(3x+1\right)^2=\left(3+2x\right)^3-2\left(2-x\right)^2-\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(2x-1\right)^3-\left(2x+3\right)^3-3\left(3x+1\right)^2-2\left(x-2\right)^2+\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3-36x^2-54x-27-3\left(9x^2+6x+1\right)-2\left(x^2-4x+4\right)+x^2+x-2=0\)
\(\Leftrightarrow-48x^2-48x-28-27x^2-18x-3-2x^2+8x-8+x^2+x-2=0\)
\(\Leftrightarrow-76x^2-57x-41=0\)
\(\Leftrightarrow76x^2+57x+41=0\)
\(\text{Δ}=57^2-4\cdot76\cdot41=-9215< 0\)
Vậy: Phương trình vô nghiệm
Tìm x : \(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)
\(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)
\(8x^3-12x^2+6x-1-3\left(1-6x+9x^2\right)=27+54x+36x^2+8x^3-2\left(x^2+3x-2x-6\right)\)\(8x^3-12x^2+6x-1-3+18x-27x^2=27+54x+36x^2+8x^3-2x^2-6x+4x+12\)\(8x^3-39x^2+24x-4=8x^3+34x^2+52x+39\)
\(8x^3-39x^2+24x-4-8x^3-34x^2-52x-39=0\)
\(-73x^2-28x-43=0\)
Vậy đa thức vô nghiệm
Tìm x: \(\left(2x-1\right)^3-3\left(x+2\right)\left(x-3\right)=\left(3+2x\right)^3-3x\left(x+1\right)\)
(2x−1)3−3(x+2)(x−3)=(3+2x)3−3x(x+1)
<=>\(8x^3-12x^2+6x-1-3x^2+3x+18=9+54x+36x^2+8x^3-3x^2-3x\)
<=>\(48x^2+42x-8=0\)
<=> \(x=\frac{-21\pm5\sqrt{33}}{48}\)
Tìm x: \(\frac{\left(2x-1\right)^2}{3}-\frac{1}{2}\left(1+3x\right)^2=\frac{1}{3}\left(x-1\right)\left(2-3x\right)\)
\(\Leftrightarrow\dfrac{1}{3}\left(4x^2-4x+1\right)-\dfrac{1}{2}\left(9x^2+6x+1\right)=\dfrac{1}{3}\left(2x-3x^2-2+3x\right)\)
\(\Leftrightarrow\dfrac{4}{3}x^2-\dfrac{4}{3}x+\dfrac{4}{3}-\dfrac{9}{2}x^2-3x-\dfrac{1}{2}=\dfrac{1}{3}\left(-3x^2+5x-2\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{-19}{6}-\dfrac{13}{3}x+\dfrac{5}{6}+x^2-\dfrac{5}{3}x+\dfrac{2}{3}=0\)
\(\Leftrightarrow x^2\cdot\dfrac{-13}{6}-6x+\dfrac{3}{2}=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot\left(-\dfrac{13}{6}\right)\cdot\dfrac{3}{2}=49\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-7}{2\cdot\dfrac{-13}{6}}=\dfrac{3}{13}\\x_2=\dfrac{6+7}{2\cdot\dfrac{-13}{6}}=-3\end{matrix}\right.\)
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)
\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)
\(\Leftrightarrow-301x^2+16x+21=0\)
\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)
Cho phân thức C=\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a, Tìm điều kiện của x để P xác định
b, Tìm giá trị của x để phân thức bằng 1
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`
Tìm x : \(\left(x-2\right)^3+\left(3x-2\right)^2-5x\left(x+1\right)=\left(1+x\right)^3-2\left(2x+1\right)^2\)
(x -2)\(^3\) +(3x-2)\(^2\) -5x (x+1) = (1+x)\(^3\) - 2(2x+1)\(^2\)
<=> (x\(^3\) -3.x\(^2\).2+3.x.2\(^2\) -2\(^3\)) + [(3x)\(^2\) - 2.3x.2 +2\(^2\)] - (5x.x+ 5x .1) = (1\(^3\) + 3.1\(^2\).x+ 3.1.x\(^2\) + x\(^3\) )- [2((2x)\(^2\) +2.2x.1+ 1\(^2\))]
<=> (x\(^3\) - 6x\(^2\) + 12x - 8) + (9x\(^2\) -12x+ 4)- (5x\(^2\) + 5x) = (1+3x + 3x\(^2\) + x\(^3\)) - [ 2.(4x\(^2\) + 4x +1]= (1+3x + 3x\(^2\) + x\(^3\)) - ( 8x\(^2\)+ 8x +2)
<=> x\(^3\) - 6x\(^2\) + 12x - 8 + 9x\(^2\) -12x+ 4 - 5x\(^2\) - 5x = 1+3x + 3x\(^2\) + x\(^3\) - 8x\(^2\) -8x - 2
<=> x\(^3\) +(- 6x\(^2\) + 9x\(^2\) - 5x\(^2\) ) +(12x- 12x - 5x) + (-8 +4) = (1-2) + ( 3x-8x) +( 3x\(^2\) - 8x\(^2\) ) + x\(^3\)
<=> x\(^3\) +( -2x\(^2\)) + (-5x) + (-4) = -1 + (-5x) +( -5x\(^2\))+ x\(^3\)<=> x\(^3\) -2x\(^2\) -5x-4= -1 - 5x - 5x\(^2\) +x\(^3\)<=> -2x\(^2\) -4 = -1 -5x\(^2\)<=> -2x\(^2\) + 5x\(^2\) = -1 +4 ( chuyển vế )<=> 3x\(^2\) = 3<=> x\(^2\) = 3:3<=> x\(^2\) = 1<=> x = \(\sqrt{1}\)<=> x= 1 CHÚC BẠN HỌC TỐTTìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
Tìm x: \(\left(x-3\right)^3+2\left(2x-1\right)^2-2\left(x-1\right)=\left(2+x\right)^3-3\left(1+3x\right)^2\)