Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Tiến Đạt Nguyễn
Xem chi tiết
Hi Mn
Xem chi tiết

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

Kimian Hajan Ruventaren
Xem chi tiết
fguwgrjjdgqfui
Xem chi tiết
Doan Nam Phuong Dung
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2020 lúc 22:23

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2020 lúc 22:25

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)

Khách vãng lai đã xóa
nguyễn hà vân
Xem chi tiết
thuthuy123
10 tháng 8 2017 lúc 22:24

cái đề là j vậy bạn 

Trịnh Thị Thanh Huyền
10 tháng 8 2017 lúc 22:29

Bn vt j mà mk ko hiểu.Phải đưa ra cái đề chứ

nguyễn hà vân
11 tháng 8 2017 lúc 20:19

cho m xin lỗi đề bài là tìm x để biểu thức có giá trị như sau.

Luong cong thanh
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 23:03

Lời giải:

Sửa $f(x)=mx+m-2x=x(m-2)+m$

Với $m=2$ thì $f(x)=2>0$ với mọi $x$, tức là không có giá trị thực nào của $x$ để $f(x)$ âm (thỏa mãn)

Với $m\neq 2$ thì đồ thị $f(x)=x(m-2)+m$ là 1 đường thẳng tiếp tuyến, luôn tồn tại giá trị của $x$ để $f(x)$ âm.

Vậy $m=2$

Akai Haruma
2 tháng 3 2021 lúc 22:37

$f(x)=mx+m=2x$? Bạn có ghi nhầm đề không nhỉ?

Nguyễn Xuân Tài
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 3 2023 lúc 21:43

- Với \(m=0\Rightarrow f\left(x\right)=-4x-5>0\) khi \(x< -\dfrac{5}{4}\) (ktm)

- Với \(m\ne0\Rightarrow f\left(x\right)< 0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-4< m< -\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow-4< m< -\dfrac{1}{3}\)

le ngoc han
Xem chi tiết
Kiệt Nguyễn
23 tháng 7 2019 lúc 10:46

\(F=\frac{x^2-1}{x^2}=1-\frac{1}{x^2}\)

Để \(F< 0\)thì \(1-\frac{1}{x^2}< 0\Leftrightarrow\frac{1}{x^2}>1\Leftrightarrow1>x^2\Leftrightarrow x^2-1< 0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\Leftrightarrow-1< x< 1\)và \(x\ne0\)

vương quốc triệu
27 tháng 1 2020 lúc 21:37

\(F=\frac{x^2-1}{x^2}\)  

Để F đạt giá trị âm

\(\Rightarrow\hept{\begin{cases}x^2-1< 0\\x^2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 1\\x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}-1< x< 1\\x\ne0\end{cases}}}\)

  Vậy   \(-1< x< 1;x\ne0\)   thì C đạt giá trị âm

Khách vãng lai đã xóa