Tìm TXĐ và xét tính chẵn lẽ của hàm số?
y=\(1/tanx\)
y= 1/ 2cox x +1
y=\(sin^2\)x + 2 cosx -3
Tìm TXĐ các hàm số:
a, y = sin \(2-\sqrt{x-1}\)
b, y = \(\dfrac{tanx}{cos2x+1}\)
c, y = \(\sqrt{cosx}\)
ĐKXĐ:
a. \(x-1\ge0\Rightarrow x\ge1\)
b. \(\left\{{}\begin{matrix}cosx\ne0\\cos2x+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\2x\ne\pi+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)
c.
\(cosx\ge0\Rightarrow-\dfrac{\pi}{2}+k2\pi\le x\le\dfrac{\pi}{2}+k2\pi\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Tìm txđ của hàm số sau:
1, \(y=sin\sqrt{\dfrac{1+x}{1-x}}\)
2,\(y=\sqrt{\dfrac{sinx+2}{cosx+1}}\)
3,\(y=\dfrac{2}{cosx-cos3x}\)
1.
Hàm số xác định khi \(\left\{{}\begin{matrix}\dfrac{1+x}{1-x}\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x< 1\\x\ne1\end{matrix}\right.\Leftrightarrow-1\le x< 1\)
2.
Hàm số xác định khi \(cosx+1\ne0\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne-\pi+k2\pi\)
3.
Hàm số xác định khi \(cosx-cos3x\ne0\Leftrightarrow sin2x.sinx\ne0\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
1. Tìm GTNN GTLN của hàm số y=\(\sqrt{3}cosx-sinx+\sqrt{2}\)
2. Xét tính chãn lẽ của hàm số \(y=\left|tanx\right|+sin\left(\frac{3\pi}{2}+x\right)\)
2. Gọi T là tổng của nghiệm âm lớn nhất và nghiệm dương bé nhất của phương trình \(sin4x+cos5x=0\). Giá trị của T là?
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
Tìm TXĐ( giúp mình vs ạ :(( )
a) y=sin 1\x
b) y=tanx+cotx-4
c) y= tanx\cosx-1
d) y=sin(x+1\x-1)
e) y=tan(3x+pi\4)
f) y= tan2(x+pi\3)\cosx+1
g) y=cot(x-3 pi)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
1) Tìm TXĐ của các hàm số sau:
a) y= tan ( x - \(\frac{\Pi}{4}\) ) + cos2x
b) y= \(cos^3\frac{x}{x^2-1}\)
c) y= \(\frac{cosx+1}{x^2+1}\)
d) y= \(\frac{tanx}{x^2-x+2}\)
2) Xét tính chẵn lẻ của các hàm số sau:
a) f(x) = \(\frac{x+tanx}{x^2+1}\)
b) f(x) = \(\frac{5x.cos5x}{sin^2x+2}\)
c) f(x) = (2x-3). sin4x
d) f(x)= \(sin^42x+cos^4\left(2x-\frac{\Pi}{6}\right)\)
1. ĐKXĐ:
a.
\(cos\left(x-\frac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\frac{3\pi}{4}+k\pi\)
b.
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
c.
Hàm xác định trên R
d.
\(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)
2.
a. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
Miền xác định đối xứng
\(f\left(-x\right)=\frac{-x+tan\left(-x\right)}{\left(-x\right)^2+1}=\frac{-x-tanx}{x^2+1}=-\frac{x+tanx}{x^2+1}=-f\left(x\right)\)
Hàm lẻ
b. \(f\left(-x\right)=\frac{5\left(-x\right).cos\left(-5x\right)}{sin^2\left(-x\right)+2}=\frac{-5x.cos5x}{sin^2x+2}=-f\left(x\right)\)
Hàm lẻ
c. \(f\left(-x\right)=\left(-2x-3\right)sin\left(-4x\right)=\left(2x+3\right)sin4x\)
Hàm không chẵn không lẻ
d. \(f\left(-x\right)=sin^4\left(-2x\right)+cos^4\left(-2x-\frac{\pi}{6}\right)\)
\(=sin^42x+cos^4\left(2x+\frac{\pi}{6}\right)\)
Hàm ko chẵn ko lẻ