Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định hệ số a,b,c sao cho đa thức ax^3+bx+c chia hết cho x+2, còn khi chia cho x^2-1 thì dư x+5
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
xác định hệ số a b c sao cho đa thức f(x)= 2x^4+ax^2 +bx+c chia hết cho x-2 khi chia f(x) cho x^2-4x+3 thì được phần dư là -x+2
\(f\left(x\right)=2x^4+ax^2+bx+c\)
\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)
\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)
=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)
f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)
\(f\left(x\right)=2x^4+ax^2+bx+c\)
\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)
\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30
f(x) chia cho x2-4x+3 dư -x+2 nên ta có:
\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)
1. Xác định a,b,c sao cho
\(2x^4+ax^2+bx+c\text{⋮}x-2\)
cọn khi chia cho \(x^2-1\) thì dư 2x
2. Tìm đa thức f(x), biết f(x) :x-3 thì dư 2; f(x) :x+4 thì dư 9; còn f(x) :\(x^2+x-12\) được thương \(x^2+3\) và còn dư
Bài 1:
\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)
\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)
Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)
Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)
Bài 2:
Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1
Gọi đa thức dư là \(ax+b\)
Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên
\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)
Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)
Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)
Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)
Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)
\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)
xác định hằng số a,b,c sao cho ax^3+bx^2+c chia hết cho x+2 và khi chia cho x^2-1 thì dư x+5
Do \(\left(ax^3+bx^2+c\right)⋮\left(x+2\right)\Rightarrow ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)(*)
Thay x = - 2 vào (*) ta được :\(-8a+4b+c=0\)(1)
Do \(\left(ax^3+bx^2+c\right):\left(x^2-1\right)\text{dư}\text{ }x+5\) \(\Rightarrow\left(ax^{\:3}+bx^2+c-x-5\right)⋮\left(x^2-1\right)\left[\text{ }\right]\)
\(\Rightarrow ax^3+bx^2-x+c-5=\left(x^2-1\right)G\left(x\right)\)(**)
Thay x = 1 vào (**) ta đc \(a+b+c-6=0\Rightarrow a+b+c=6\)(2)
Thay \(x=-1\) vào (**) ta đc \(-a+b-c-4=0\Leftrightarrow-a+b-c=4\)(3)
Từ (1);(2);(3) ta có phương trình : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b-c=4\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{7}{3}\\b=5\\c=-\frac{4}{3}\end{cases}}}\)
Tìm các hệ số a,b,c sao cho đa thức 3x^4+ax^2+bx+c chia hết cho đa thức (x-2) và chia cho đa thức (x^2-1) được thương và còn dư (-7x-1)
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé