Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thành Đạt
Xem chi tiết
Cô Hoàng Huyền
1 tháng 6 2016 lúc 15:23

\(M=\frac{x^2-4-5-\left(x+3\right)}{x^2+x-6}=\frac{x^2-x-12}{x^2+x-6}=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để M nguyên thì \(\frac{2}{x-2}\) nguyên.

x-2-2-112
x0135

Vậy có 4 giá trị x thỏa mãn.

Chúc em luôn học tập tốt :))

Nguyễn Phương Trang
Xem chi tiết
Mobi Gaming
Xem chi tiết
deo can biet
6 tháng 10 2019 lúc 19:24

x= 3.x+x

x3.x2=x1.x =x3

x=3++.x3

x=6.3xx=4

a x=5

b m=4.5.

x=4.5-.5.4 +6+

m se co gia tri lon nhat la.4.5.6-7+8

tu di ma tinh tui giai cho roi day neu muon day them goi 0637995421

Phạm Thị Thùy Linh
6 tháng 10 2019 lúc 19:24

\(a,\)\(M=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\frac{3}{x^2+1}\)

\(b,M\in Z\Leftrightarrow\frac{3}{x^2+1}\in Z\)

\(\Rightarrow3\)\(⋮\)\(x^2+1\)\(\Rightarrow x^2+1\inƯ_3\)

Ta có \(Ư_3=\left\{\pm1;\pm3\right\}\)

Mà \(x^2+1\ge1\)với mọi x 

\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{2}\end{cases}}}\)

\(c,\)\(M_{max}\Leftrightarrow x^2+1\)nhỏ nhất \(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)

\(\Rightarrow M_{max}=3\Leftrightarrow x=0\)

Nguyễn Thị Ngọc Linh
6 tháng 10 2019 lúc 19:26

a)  M= \(\frac{3x+3}{x^3+x^2+x+1}\)=\(\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)=\(\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)=\(\frac{3}{x^2+1}\)

b) M=\(\frac{3}{x^2+1}\)\(\in\)Z <=> 3 \(⋮\)x2+1

=> (x2+1) \(\in\){1;3;-1;-3}

=> x2\(\in\){0;2;-2;-4}

=> x \(\in\){0;căn 2}

Mà x \(\in\)Z => x=0

Võ Ngọc Phương
Xem chi tiết
Akai Haruma
31 tháng 10 2023 lúc 13:24

Lời giải:

$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$

Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$

Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$

$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)

Hippo
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 11:35

\(B+1=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}+1=\dfrac{3\sqrt{x}+2}{\sqrt{x}+3}>0\Rightarrow B>-1\)

\(B-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}-2=\dfrac{-7}{\sqrt{x}+3}< 0\Rightarrow B< 2\)

\(\Rightarrow\left[{}\begin{matrix}B=0\\B=1\end{matrix}\right.\)

- Với \(B=0\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\notin Z\) (loại)

- Với \(B=1\Rightarrow2\sqrt{x}-1=\sqrt{x}+3\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

Hippo
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
22 tháng 7 2021 lúc 20:18

Toán lớp 6 

Khách vãng lai đã xóa
Dương Diệu Linh
Xem chi tiết
alibaba nguyễn
15 tháng 6 2017 lúc 14:03

\(H=\frac{x^4+x^3+x^2+x-29}{x^2+1}=x^2+x-\frac{29}{x^2+1}\)

Để H nguyên thì \(x^2+1\)phải là ước nguyên dương của 29 hay

\(\left(x^2+1\right)=\left(1;29\right)\)

\(\Rightarrow x=0\)

Dương Diệu Linh
20 tháng 6 2017 lúc 13:24

thanks bn nhiều

Nguyễn Hoàng Tú
Xem chi tiết
hãy đưa nk
Xem chi tiết
Nữ Hoàng Bóng Đêm
22 tháng 2 2018 lúc 16:22

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

Nữ Hoàng Bóng Đêm
22 tháng 2 2018 lúc 16:13

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}