Tìm số có 3 chữ số \(\overline{abc}\) thỏa mãn 1:\(\overline{0,abc}\) =a+b+c
Tìm các chữ số a, b, c đôi một khác nhau thỏa mãn
\(\overline{acb}+\overline{cab}=2\overline{abc}\) và b>c
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
abc là số tự nhiên có 3 chữ số thỏa mãn \(\overline{abc}⋮n;\overline{bca}⋮n;\overline{cab}⋮n\)
CMR \(a^3+b^3+c^3-3abc⋮n\)
Tìm các chữ số a , b , c khác 0 thỏa mãn : \(\overline{abbc}\) = \(\overline{ab}\) . \(\overline{ac}\) . 7
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
tìm các chữa số a, b , c thỏa mãn \(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}=1\)
1.Tìm số có 3 chữ số \(\overline{abc}\)biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\) biết \(\overline{abc}\) chia hết cho 9 và a=3+c+1
1.Tìm số có 3 chữ số abc biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\)biết \(\overline{abc}\)chia hết cho 9 và a=3+c+1
ồ cuk khó nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
Cho a,b,c là các chữ số (a,b khác 0 ) thỏa mãn khi đó
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)