Cho a > b > 0 và a2 - 6b2 = -ab. Tính M = \(\frac{2ab}{2a^2-3b^2}\)
Cho a>b>0, và a2 - 6b2 = -ab. Tính giá trị của M = \(\frac{2ab}{2a^2-3b^2}\)
cho a>b>0 và a2 - 6b2= -ab
tính M= (2ab)/(2a2 - 3b2)
Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)
\(\Rightarrow a^2+3ab-2ab-6b^2=0\)
\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)
\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
Xét \(a=-3b\) thay vào M ta có:\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)
Xét \(a=2b\) thay vào M ta có:\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)
Cho a > b > 0 và \(a^2-6b^2=-ab\) Gía trị của biểu thức \(M=\frac{2ab}{2a^2-3b^2}\)
a^2-6b^2=-ab
a^2+ab-6b^2=0
a^2+3ab-2ab-6b^2=0
a(a+3b)-2b(a+3b)=0
(a+3b)(a-2b)=0
suy ra a+3b=0 hoặc a-2b=0
ta có a>b>0 nên a+3b=0 sẽ ko xảy ra
suy ra a-2b=0 ,a=2b
thế vào đa thức M ta có M=2.2b.b/2.(2b)^2-3b^2
M=4b^2/5b^2=4/5
cho a>b>0 và a^2 - 6b^2 = -ab. tính giá trị biểu thức
M= 2ab/2a^2 - 3b^2 ( kết quả dưới dạng phân số tối giản)
làm ơn giúp tớ với!!!
Bài 1: Cho a,b thỏa mãn \(a^2\) +\(ab^2-2b^4=0\) ; a,b≠ 0; \(b^2≠ 3a ; b≠ 0 ; b≠-2a\)
Tính A= \(\frac{a+2b^2}{3a-b^2}+\frac{ab-3b^2}{2ab+b^2}\)
Câu 87*: Biến đổi ab \(\sqrt{\dfrac{a}{3b}}\) - a2\(\sqrt{\dfrac{3b}{a}}\)= m\(\sqrt{3ab}\)với a > 0 , b > 0 thì m bằng:
A . \(\dfrac{-2a}{3}\); B . \(\dfrac{2a}{3}\); C.\(\dfrac{-2}{3}\); D.3a.
giải hộ mik vs
\(ab\cdot\sqrt{\dfrac{a}{3b}}-a^2\sqrt{\dfrac{3b}{a}}\)
\(=a\sqrt{ab}-a^2\cdot\dfrac{\sqrt{3b}}{\sqrt{a}}\)
\(=a\sqrt{ab}-a\sqrt{a}\cdot\sqrt{3b}\)
\(=a\sqrt{ab}\left(1-\sqrt{3}\right)\)
\(\Leftrightarrow m=\dfrac{a\sqrt{ab}\left(1-\sqrt{3}\right)}{\sqrt{3ab}}=\dfrac{a\left(\sqrt{3}-3\right)}{3}\)
cho a,b khác 0 và a2-2ab-3b2=0 . tính A= (7a+2b)/(2a+b)+(9a-5b)/(2a-b).
Ghi cách lm giúp mik nha
a^2-2ab-3b^2=0
=>a^2-3ab+ab-3b^2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
mà a,b khác 0 => a+b khác 0
=>a-3b=0
=>a=3b
Thay vào A ta được:
A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b=23/7+22/5=......
ta có:a-2ab-3b2=0
=>a2-3ab+ab-3b2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
vìa,b khác 0=>a-3b=0
=>a=3b
thay vào A ta được:
A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b
=23/7+22/5
=269/35
Vậy A=269/35
cho a,b khác 0, a2-2ab-3b2=0. tính A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
a^2 - 2ab - 3b^2 = 0
<=> a^2 - 3ab + ab - 3b^2 = 0
<=> a(a - 3b) + b(a - 3b) = 0
<=> (a - 3b)(a + b) = 0
=> a - 3b = 0 hoặc a + b = 0
=> a = 3b hoặc a = -b
+ Nếu a = 3b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)
A = 23b/7b + 22b/5b
A = 23/7 + 22/5 = 269/35
+ Nếu a = -b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)
A = -5b/-b + (-14b/-3b)
A = 5 + 14/3 = 29/3
tìm a,b thuộc Z
a. ab=2a+2b+5
b.ab-7b+5a=0 và b>hoặc=3
c.2ab+3b-4a=1
d.\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\)