GTLN 3.(6-|y-1|)-(x-2)^2
Cho 2x+y=3. Tìm GTLN cua xy
Cho x2+y2=1 Tìm GTLN cua x6+y6
Thank you
a) xy đạt giá trị lớn nhất khi x,y cùng dấu
Mà 2x+y=3 nên x,y phải dương
Áp dụng Cô-si cho 2 số dương 2x và y ta có:
\(2x+y\ge2\sqrt{2xy}\)
\(\Leftrightarrow3\ge2\sqrt{2xy}\Rightarrow xy\le\frac{9}{8}\)
b) Nghĩ đã
1 \(\left(2x+y\right)^2=4x^2+4xy+y^2=9\)
\(\left(2x-y\right)^2>=0\Rightarrow4x^2-4xy+y^2>=0\Rightarrow4x^2+y^2>=4xy\)
\(\Rightarrow4x^2+4xy+y^2=9>=4xy+4xy=8xy\Rightarrow\frac{9}{8}>=xy\)
dấu = xảy ra khi \(x=\frac{3}{4};y=\frac{3}{2}\)
vậy max của xy là \(\frac{9}{8}\)khi \(x=\frac{3}{4};y=\frac{3}{2}\)
b)Đề sai nhé
\(\left(x^2+y^2\right)^3=x^6+y^6+3x^2y^2\left(x^2+y^2\right)\)
\(\Rightarrow x^6+y^6=1-3x^2y^2\)
Áp dụng BĐT Cô si với hai số dương x2 và y2 ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow x^2y^2\le\frac{1}{4}\)
\(\Rightarrow x^6+y^6\ge1-3.\frac{1}{4}=\frac{1}{4}\)
Vậy \(min\left(x^6+y^6\right)=\frac{1}{4}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
1,Tìm GTLN: 1, A=|x^2-x+1|-|x^2-x-2|
2,Tìm GTLN: B=|x-y|+|x-z|+|y-z| với 0<x,y,z<3
\(Taco:\)
\(|x^2-x+1|-|x^2-x-2|=|x^2-x+1|+\left(-|x^2-x-2|\right)\)
\(\ge|x^2-x+1-x^2+x+2|=3\)
Dấu "=" xảy ra khi: \(\left(x^2-x+1\right)\left(x^2-x-2\right)\ge0\Leftrightarrow........\)
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, nghiệm của hpt \(\left\{{}\begin{matrix}2\sqrt{x}+3y^3=28\\2y^3-5\sqrt{x}=6\end{matrix}\right.\) là \(\left(x,y\right)=\left(...;...\right)\)
3, cho hpt \(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\). tìm m để hpt có nghiệm (x,y) sao cho tích xy đạt GTNN. kết quả m =...
4,cho 2 số a, tm\(a^2+b^2=4a+bc+540\)
GTLN của \(P=23a+4b+2013\)
5, cho đa thức P(x) tm \(P\left(x-1\right)+2P\left(2\right)=x^2\). Giá trị của \(P\left(\sqrt{2013}-1\right)\) bằng ...
Câu 1:
\(ĐK:x\ge2\)
Áp dụng BĐT cauchy ta có:
\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)
Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)
\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)
Câu 2:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;2\right)\)
Câu 3:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)
Đặt \(xy=t\)
\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)
PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)
\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)
Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)
Câu 4: \(a^2+b^2=4a+bc+540\)
c đâu ra vậy?
Câu 5:
Thay \(x=3\Leftrightarrow P\left(2\right)+2P\left(2\right)=3^2\Leftrightarrow P\left(2\right)=3\)
Thay \(x=\sqrt{2013}\)
\(\Leftrightarrow P\left(\sqrt{2013}-1\right)+2P\left(2\right)=\left(\sqrt{2013}\right)^2=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)+6=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)=2007\)
a, Tìm GTNN của A = (x-1)(x+2)(x+3)(x+6)
b, Tìm GTLN cuả B= (1-xn)(1+xn)+(2-yn)(2+yn)
a) A = (x-1)(x+2)(x+3)(x+6)
A= [(x-1)(x+6)][(x+2)(x+3)]
A=(x^2 + 5x - 6)(x^2 + 5x + 6) ( cái này mik làm tắt)
A = (x^2+5x)^2 - 6^2
A= (x^2+5x)^2 - 36
...
a, GTNN của A là 0 vì nếu x>0 thì GTNN của x là 1 mà trong A có (x-1) có thể bằng (1-1) = 0 mà 0 nhân với bất kì số nào cũng bằng 0
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)(1)
Đặt \(x^2+5x=a\)
\(\left(1\right)=\left(a-6\right)\left(a+6\right)=a^2-36\le-36\)
Vậy \(A_{min}=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
tìm GTLN,GTNN
M=x^2+6x-1
N=10y-5y^2-3
P=x^2-4x+y^2-8y+6
Ta có : M = x2 + 6x - 1
=> M = x2 + 6x + 9 - 10
=> M = (x + 3)2 - 10
Mà : (x + 3)2 \(\ge0\forall x\)
Nên M = (x + 3)2 - 10 \(\ge-10\forall x\)
Vậy Mmin = -10 , dấu "=" sảy ra khi x = -3
\(M=x^2+6x-1=\left(x^2+6x+9\right)-10=\left(x+3\right)^2-10\ge-10\)
Vậy \(MinM=-10\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x=-3\)
\(N=10y-5y^2-3=-5\left(y^2-2y+1\right)+5-3=-5\left(y-1\right)^2+2\le2\)
Vậy \(MaxN=2\Leftrightarrow-5\left(y-1\right)^2=0\Leftrightarrow y=1\)
\(P=x^2-4x+y^2-8y+6=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Vậy \(MinP=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)
\(N=10y-5y^2-3=-\left(5y^2-10y+5-8\right)=-\left[5\left(y^2-2y+1\right)-8\right]=8-5\left(y-1\right)^2\le8\)
maxN=8 khi (y-1)2=0 <=> y-1=0 <=> y=1
---
\(P=x^2-4x+y^2-8y+6=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge14\)
minP=14 khi (x-2)2=(y-4)2=0 <=>x-2=y-4=0 <=>x=2;y=4
a) Cho x2+y2=1.Tìm GTLN của M=x6+y6
b)Giải pt:x2+x+12\(\sqrt{x+1}\)=3
Mình ko hỉu GTNN,GTLN cho lắm..Mấy bạn giải rồi hướng dẫn cho ví dụ khác được không ạ??
Ta có:
\(x^2+y^2\ge2xy\)
\(\Rightarrow1=\left(x^2+y^2\right)^2\ge4x^2y^2\)
\(\Rightarrow0\le x^2y^2\le\dfrac{1}{4}\)
Ta có: \(M=x^6+y^6=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)=1-3x^2y^2\)
\(\Rightarrow1\ge M\ge\dfrac{1}{4}\)
Max là 1
Cho x,y thỏa mãn x2+y2=1 tính gtln của x6+y6
cho 2 ≤ x ≤ 3, 4 ≤ y ≤ 6, 4 ≤ z ≤ 6 và x + y + z = 12. Tìm GTLN của P = xyz
\(P=\dfrac{1}{12}.3x.2y.2x\le\dfrac{1}{12}.\dfrac{1}{27}\left(3x+2y+2z\right)^3\)
\(P\le\dfrac{1}{324}\left(x+24\right)^3\le\dfrac{1}{324}.\left(3+24\right)^3=\dfrac{243}{4}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(3;\dfrac{9}{2};\dfrac{9}{2}\right)\)
giúp mình với :
cho x,y thỏa mãn x^2+y^2=1 . Tìm GTLN của biểu thức A=x^6+y^6