Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương anh trần
Xem chi tiết
Quỳnh Anh
19 tháng 7 2021 lúc 20:48

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

Khách vãng lai đã xóa
Đã Ẩn
Xem chi tiết
Thu Thao
12 tháng 12 2020 lúc 16:29

Bạn chú ý đăng lẻ câu hỏi! 1/

a/ \(=x^3-2x^5\)

b/\(=5x^2+5-x^3-x\)

c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)

d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)

e/ \(=x^4-x^2+2x^3-2x\)

f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)

yenhi chu
Xem chi tiết
Đã Ẩn
Xem chi tiết
Ha Nguyen Dang
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:47

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:49

Mà bài này hình như học ở lớp 7 rồi!lolang

vân nguyễn
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 8:44

`a)A=x(x+y)-x(y-x)`

`=x^2+xy-xy+x^2`

`=2x^2`

Thay `x=-3`

`=>A=2.9=18`

`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`

`=8x^2+4xy+4xy+2y^2-y^2-2xy`

`=8x^2+y^2+6xy`

Thay `x=1/2,y=-3/4`

`=>B=8*1/4+9/16-9/4`

`=2+9/16-9/4`

`=9/16-1/4=5/16`

Văn Thắng Hồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2022 lúc 21:10

a: \(=5x^4-4x^3y+10x^3y-8x^2y^2-25x^2y^2+20xy^3-15xy^3+12y^4\)

\(=5x^4+6x^3y-33x^2y^2+5xy^3+12y^4\)

b: \(=\left(x^2-x-2\right)\left(2x-1\right)\)

\(=2x^3-x^2-2x^2+x-4x+2\)

\(=2x^3-3x^2-3x+2\)

c: \(=8x^3+y^3\)

d: \(=a^4-b^4\)

Nguyễn Khánh
Xem chi tiết
Kiều Vũ Linh
17 tháng 12 2023 lúc 14:43

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 14:47

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

Kiều Vũ Linh
17 tháng 12 2023 lúc 14:55

Bài 2

a) x²(x - 2023) - 2023 + x = 0

x²(x - 2023) - (x - 2023) = 0

(x - 2023)(x² - 1) = 0

x - 2023 = 0 hoặc x² - 1 = 0

*) x - 2023 = 0

x = 2023

*) x² - 1 = 0

x² = 1

x = 1 hoặc x = -1

Vậy x = -1; x = 1; x = 2023

b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0

-x² + 4x + 2x² - 4x - 9 = 0

x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

c) x² + 2x - 3x - 6 = 0

(x² + 2x) - (3x + 6) = 0

x(x + 2) - 3(x + 2) = 0

(x + 2)(x - 3) = 0

x + 2 = 0 hoặc x - 3 = 0

*) x + 2 = 0

x = -2

*) x - 3 = 0

x = 3

Vậy x = -2; x = 3

d) 3x(x - 10) - 2x + 20 = 0

3x(x - 10) - (2x - 20) = 0

3x(x - 10) - 2(x - 10) = 0

(x - 10)(3x - 2) = 0

x - 10 = 0 hoặc 3x - 2 = 0

*) x - 10 = 0

x = 10

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = 2/3; x = 10