Tìm giá trị lớn nhất của biểu thức:
A=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
tìm giá trị x để biểu thức : B=\(y=\frac{3x^2+9x+17}{3x^2-9x+7}\)đạt giá trị lớn nhất.
Tìm giá trị lớn nhất của biểu thức
\(B=\frac{3x^2+9x+17}{3x^2+9x+7}\)
Tìm giá trị lớn nhất của biểu thức:
a/ 2x-x^2-4
b/ -9x^2+24x-18
a) \(2x-x^2-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(-9x^2+24x-18=-\left(9x^2-24x+16\right)-2\)
\(=-\left(3x-4\right)^2-2\le-2\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{4}{3}\)
a) \(2x-x^2-4\)
\(-x^2+2x-4\)
\(-\left(x^2-2x+1\right)-3\)
\(-\left(x-1\right)^2-3\text{ }\text{≤}-3\)
Min =-3 ⇔\(-\left(x-1\right)^2=0\)
⇔\(x-1=0\)
⇔\(x=1\)
tìm giá trị lớn nhất của biểu thức B=3x2+9x+1 phần 3x2+9x+7
Tìm giá trị nhỏ nhất của
A=x^2-10x+3
B=3x^2+7x-2
Tìm giá trị lớn nhất của
A= -9x^2+12x-5
B= -2x^2 -3x +7
Tìm GTNN
A = x2 - 10x + 3 = ( x2 - 10x + 25 ) - 22 = ( x - 5 )2 - 22 ≥ -22 ∀ x
Dấu "=" xảy ra khi x = 5
=> MinA = -22 <=> x = 5
B = 3x2 + 7x - 2 = 3( x2 + 7/3x + 49/36 ) - 73/12 = 3( x + 7/6 )2 - 73/12 ≥ -73/12 ∀ x
Dấu "=" xảy ra khi x = -7/6
=> MinB = -73/12 <=> x = -7/6
Tìm GTLN
A = -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra khi x = 2/3
=> MaxA = -1 <=> x = 2/3
B = -2x2 - 3x + 7 = -2( x2 + 3/2x + 9/16 ) + 65/8 = -2( x + 3/4 )2 + 65/8 ≤ 65/8 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MaxB = 65/8 <=> x = -3/4
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Giá trị lớn nhất của biểu thức B=9x-3x2
B=-3(x2-3x)
B=-3(x2-2\(\frac{3}{2}\)x+\(\frac{9}{4}\)-\(\frac{9}{4}\))
B=-3(x-\(\frac{3}{2}\))2+\(\frac{27}{4}\)
Vậy GTLN của B là \(\frac{27}{4}\)hay 6, 25
Hãy tìm giá trị lớn nhất hoặc bé nhất của các biểu thức sau:
a.A=x^2-x+3
b.B=x^2-4x+1
c.C=9x+2-3x
d.D=3-4x-x^2
\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)
\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(B\right)=-3\)
Câu C bạn xem lại đề
\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=7\)
\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)
Vậy GTNN của A là 11/4 khi x=1/2
\(B=x^2-4x+1=\left(x^2-2.x.2+4\right)-3\\ =\left(x-2\right)^2-3\ge\left(-3\right)\forall x\in R\\ Vậy:GTNN.của.B.là\left(-3\right).khi.x=2\)
Tìm giá trị lớn nhất:
B= (x2+10x+20):(x2+6x+9)
C= (3x2+9x+17):(3x2+9x+7)
\(B=\frac{x^2+10x+20}{x^2+6x+9}=\frac{(x^2+6x+9)+4(x+3)-1}{x^2+6x+9}\)
\(=1+\frac{4(x+3)}{x^2+6x+9}-\frac{1}{x^2+6x+9}=1+\frac{4(x+3)}{(x+3)^2}-\frac{1}{(x+3)^2}\)
\(=1+\frac{4}{(x+3)}-\frac{1}{(x+3)^2}\)
Đặt \(\frac{1}{x+3}=a\Rightarrow B=1+4a-a^2=5-(a^2-4a+4)\)
\(=5-(a-2)^2\leq 5\)
Vậy \(B_{\max}=5\Leftrightarrow a=2\Leftrightarrow x=-\frac{5}{2}\)
\(C=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)
Có: \(3x^2+9x+7=3(x^2+3x+\frac{9}{4})+\frac{1}{4}=3(x+\frac{3}{2})^2+\frac{1}{4}\geq \frac{1}{4}\)
\(\Rightarrow \frac{10}{3x^2+9x+7}\leq \frac{10}{\frac{1}{4}}=40\)
\(\Rightarrow C\leq 41\)
Vậy \(C_{\max}=41\Leftrightarrow x=\frac{-3}{2}\)