Tìm MAXD của D= -3 - | 2x + 4|
a) cho d: 2x-3y+12=0. Tìm ảnh của d qua phép tịnh tiến theo v = (4; -3) b) cho d : 2x+y-4=0 và A (3;1) ;B (-1;8) . Tìm ảnh d' của d qua phép tịnh tiến theo AB->
a, Gọi M(3 ; 6) ∈ d. Gọi \(T_{\overrightarrow{v}}\left(M\right)=M'\)
⇒ \(\overrightarrow{MM'}=\overrightarrow{v}=\left(4;-3\right)\)
⇒ M' (7 ; 3)
\(T_{\overrightarrow{v}}\left(d\right)=d'\) ⇒ d' // d và d' đi qua M' (7 ; 3)
⇒ d' : 2x - 3y - 5 = 0
b, làm tương tự
Câu 38: Trong các hàm sau Sum, Average, Max, Min. Hàm xác định giá trị nhỏ nhất có tên là:
A. Sum
B. Average
C. Max
D. Min
cho hai đa thức c(x) = 5-8x^4+2x^3+x+5x^4+x^2-4x^3 vad d(x)=(3x^5+x^4-4x)-(4x^3-7+2x^4+3x^5.tính p(x)=c(x)+d(x),q(x)=c(x)-d(x).tìm nghiệm của f(x)=q(x)-(-2x^4+2x^3+x^2-12)
`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`
B1.tìm nghiệm của đa thức: a) Ax=2x+3 B) Bx=x³-4x C) Cx=(½×x-1)×(2x-3) D) Dx=x×(1-2x)+(2x-x-4).
B1.tìm nghiệm của đa thức: a) Ax=2x+3 B) Bx=x³-4x C) Cx=(½×x-1)×(2x-3) D) Dx=x×(1-2x)+(2x-x-4).
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Tìm giá trị nhỏ nhất của :
d) D = 3 . | 2x - 1 | + | 6x - 4 |
Biết làm rồi :>>>>>>
Ta có : D = 3 . | 2x - 1 | + | 6x - 4 |
=> D = | 3 | . | 2x - 1 | + | 6x - 4 |
=> D = | 6x - 3 | + | 6x - 4 |
Vì \(\hept{\begin{cases}\left|6x-3\right|\ge6x-3\forall x\\\left|6x-4\right|\ge-6x+4\forall x\end{cases}}\)
=> | 6x - 3 | + | 6x - 4 | ≥ ( 6x - 3 ) + ( -6x + 4 )
=> D ≥ 1
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}6x-3\ge0\\6x-4\le0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x\ge3\\6x\le4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{2}{3}\end{cases}}\Leftrightarrow\frac{1}{2}\le x\le\frac{2}{3}\)
Tặng Hoàng Sơn một k
tìm GTLN của biểu thức : D = 4/(2x-3)^2+5
Dễ thấy D > 0
D có GTLN \(\Leftrightarrow\)( 2x - 3 )2 + 5 có GTNN \(\Leftrightarrow\)( 2x - 3 )2 có GTNN \(\Leftrightarrow\)2x = 3 \(\Leftrightarrow\)x = 1,5
GTLN của D = \(\frac{4}{5}\)khi x = 1,5