Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Long
Xem chi tiết
Nguyễn Huy Tú
7 tháng 8 2021 lúc 22:12

Xét tam giác DEF vuông tại D, đường cao DH 

* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm 

-> HF = EF - EH = 10 - 3,6 = 6,4 cm

* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 22:25

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DE^2=EH\cdot EF\)

\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)

Ta có: FH+EH=FE(H nằm giữa F và E)

nên FH=10-3,6=6,4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:

\(DF^2=FH\cdot FE\)

\(\Leftrightarrow DF^2=64\)

hay DF=8(cm)

Bich Nga Lê
Xem chi tiết
乇尺尺のレ
16 tháng 9 2023 lúc 18:16

Xét ΔDEH vuông tại D có đg cao DH

\(FE=HE+HF=1+4=5cm\\ DE^2=EH.FE\\ \Leftrightarrow DE^2=1.5\\ \Leftrightarrow DE=\sqrt{5}cm\\ DF^2=FE^2-DE^2\\ \Leftrightarrow DF^2=5^2-\sqrt{5}^2\\ \Leftrightarrow DF^2=20\\ \Leftrightarrow DF=\sqrt{20}=2\sqrt{5}cm\)

HT.Phong (9A5)
16 tháng 9 2023 lúc 18:19

\(EF=EH+FH=1+4=5\left(cm\right)\) 

Xét tam giác DEF vuông tại D có đường cao DH ta có: 

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{EH\cdot EF}=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\\DF=\sqrt{FH\cdot EF}=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Như Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:15

Các hệ thức về cạnh và đường cao là:

\(DE^2=EH\cdot EF\)\(DF^2=FH\cdot FE\)

\(DH^2=HE\cdot HF\)

\(DH\cdot FE=DE\cdot DF\)

\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

28-9A14- Kim Nhung
Xem chi tiết
Hà Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 21:47

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

Razen
Xem chi tiết
Hquynh
22 tháng 9 2021 lúc 12:38

Có sai đề ko vậy bẹn

Đỗ Thanh Hải
22 tháng 9 2021 lúc 12:52

Hình tự vẽ nha bạn

Xét tam giác EDF vuông tại D

Áp dụng hệ thức lượng trong tam giác vuông có

* ED2 = EH.HF 

Thay số: 30= EH.32

=> EH = 28,125cm

* DH2 = EH.HF

Thay số DH2 = 28,125 . 32 => DH = 30cm

Kim Chi Cà Pháo
Xem chi tiết
Chirifu Moe
Xem chi tiết
Khánh Hạ
11 tháng 2 2017 lúc 20:31

Giải:

Áp dụng định lý Py-ta-go vào tam giác HDF, ta có:

HF2 + DH2 = DF2

=> 162 + DH2 = 202

=> DH2 = 144 = 122

=> DH = 12 (cm)

Áp dụng định lý Py-ta-go vào tam giác DEH có:

DE= 92 + 122 = 225 = 152

=> DE = 15 (cm)

tuyên lương
11 tháng 2 2017 lúc 17:21

áp dụng định lý pitago vào tam giác DHF ta có:

HF2 + DH2 = DF2

hay 162+ DH2 = 202

suy ra : DH2= 144 =122 

suy ra: DH = 12

áp dụng định lý pitago vào tam giác DEH ta có :

DE2 = 92+122= 225 = 152

suy ra : DE = 15

Ninh Thế Quang Nhật
11 tháng 2 2017 lúc 17:23

D F E H 20 9 16

Tam giác DHF vuông tại H => FD2 = FH2 + HD2 ( Theo định lý pitago ) => DH2 = FD2 - FH2

=> DH2 - 202 - 162 = 400 - 256 = 144 = 122 => DH = 12 (cm)

Tam giác HDE vuông tại H => DE2 = DH2 + HE2 = 122 + 92 = 144 + 81 = 225 = 152

=> DE = 15 (cm)

Vậy DH = 12 cm; DE = 15 cm

Nguyễn Duy
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 14:14

\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)

\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)