Xét tam giác DEF vuông tại D, đường cao DH
* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm
-> HF = EF - EH = 10 - 3,6 = 6,4 cm
* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)