Cho x>y>0. Chứng minh: \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Cho x,y khác 0. Chứng minh rằng : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=\frac{x}{y}+\frac{y}{x}\)
Xét hiệu : \(\frac{x^4+y^4}{\left(xy\right)^2}-\frac{x^2+y^2}{ab}\)
\(\Leftrightarrow\frac{\left(x^4+y^4\right)-\left(x^3y+yx^3\right)}{\left(xy\right)^2}\)
\(\Leftrightarrow\frac{x^3\left(x-y\right)+y^3\left(y-x\right)}{\left(xy\right)^2}\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(x^2+xy+y^2\right)}{\left(xy\right)^2}\ge0\forall x,y\)
=> đpcm
Đề có sai hay thiếu gì k bạn, có đk x,y >0 hay k ?
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho x,y > 0. Chứng minh rằng: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
Cho x,y > 0. Chứng minh rằng \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\geq 3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=a\)\(\Rightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=a^2\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}=a^2-2\)
Ta có \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4=a^2-2+4=a^2+2\)
\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)=3a\)
Ta có \(a^2+2-3a=a^2-2.a.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{1}{4}=\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)
lạ có \(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2}{xy}-\dfrac{2xy}{xy}+\dfrac{y^2}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge2\)\(\Rightarrow a\ge2\Rightarrow a-\dfrac{3}{2}\ge\dfrac{1}{2}\)\(\Rightarrow\left(a-\dfrac{3}{2}\right)^2\ge\dfrac{1}{4}\Rightarrow\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge0\)
\(\Rightarrow a^2+2-3a\ge0\Rightarrow a^2+2\ge3a\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\left\{{}\begin{matrix}x;y>0\\\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
từ (2) có \(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2.\dfrac{x}{y}.\dfrac{y}{x}+\dfrac{y^2}{x^2}\right)+2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\right]-\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)-2\right]\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\ge0\) (3)
từ (1) có \(\dfrac{x}{y}+\dfrac{y}{x}=\left(\sqrt{\dfrac{x}{y}}-\sqrt{\dfrac{y}{x}}\right)^2+2\ge2\) (4)
từ (4) ; \(\left\{{}\begin{matrix}\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)>0\\\dfrac{x}{y}+\dfrac{y}{x}-2\ge0\end{matrix}\right.\) (I)
từ (I) => (3) đúng mọi phép biến đổi là <=> đẳng thức khi \(\dfrac{x}{y}=\dfrac{y}{x}\Rightarrow x=y\)=> dpcm
ta có: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2\)(1)
vì x,y >0
nên \(\dfrac{x}{y}+\dfrac{y}{x}=t,t\ge2\)ta được:
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2+2\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
<=>\(t^2+2\ge3t< =>t^2+2-3t\ge0< =>t^2-t-2t+2\ge0< =>t\left(t-1\right)-2\left(t-1\right)\ge0< =>\left(t-1\right)\left(t-2\right)\ge0\)
(BĐT cuối luôn đúng vì t > hoặc = 0) (2)
từ (1) và (2)=>\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Cho x , y , z > 0 . Chứng minh rằng : \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\ge0\)
Cho x,y,z>0. Chứng minh rằng:
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra khi \(x=y=z\)
Hoặc:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
Cộng vế với vế ta có đpcm
cho x,y là số thực khác 0
chứng minh rằng:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2+4-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+1\right)-3\left(\frac{x}{y}+\frac{y}{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}+2\right)\ge0\left(1\right)\)
Đến đây có 2 cách giải quyết
Cách 1:
\(\left(1\right)\Leftrightarrow\frac{x^2-xy+y^2}{xy}\cdot\frac{\left(x+y\right)^2}{xy}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left(x^2-xy+y^2\right)}{x^2y^2}\ge0\)
\(\Leftrightarrow\frac{\left(x+y\right)^2\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{x^2y^2}\ge0\left(true!!!\right)\)
Cách 2 là đặt ẩn:)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\cdot\frac{x}{y}\cdot\frac{y}{x}=4\)
\(\Rightarrow\left|t\right|\ge2\)
Khi đó ta có:
\(\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\ge2\Rightarrow t+1>0;t-2\ge0\Rightarrow\left(t+1\right)\left(t-2\right)\ge0\)
Nếu \(t\le-2\Rightarrow t+1< 0;t-2< 0\Rightarrow\left(t+1\right)\left(t-2\right)>0\)
=> đpcm
coolkid cách 1 viết sai rồi nha Cool kid, phải là:
\(VT-VP=\frac{\left(x-y\right)^2\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{x^2y^2}\ge0\) (chú ý là (x - y)2 chứ ko phải (x + y)2 nha!)
Cho x>y>0.chứng minh rằng : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
giai ho minh nhen may ban
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)