Cho 9x +9x =23. Khi M =\(\frac{5+3^x+3^{-x}}{1-3^x-3^{-x}}\) có giá trị bằng?
Cho 9 x + 9 − x = 23. Khi đó biểu thức A = 5 + 3 x + 3 − x 1 − 3 x − 3 − x = a b với a b tối giản và a , b ∈ ℤ . Tích a . b có giá trị bằng:
A. 8
B. 10
C. -8
D. -10
Đáp án D
Phương pháp: Biến đổi phương trình đã cho để tính 3 x + 3 − x , từ đó thay vào biểu thức A
Cách giải:
Ta có: 9 x + 9 − x = 23
⇔ 3 x + 3 − x 2 = 25 ⇔ 3 x + 3 − x = 5 vì 3 x + 3 − x > 0 , ∀ x ∈ R
⇒ A = 5 + 3 x + 3 − x 1 − 3 x − 3 − x = 5 + 5 1 − 5 = − 5 2 = a b
Vậy a b = − 10
Chú ý khi giải:
HS thường phân vân ở chỗ tính 3 x + 3 − x vì đến đó các em không biết nhận xét 3 x + 3 − x > 0 , ∀ x dẫn đến một số em có thể chọn nhầm đáp án.
Biết rằng 9 x + 9 − x = 23. Khi đó biểu thức A = 5 + 3 x + 3 − x 1 − 3 x − 3 − x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10
B. 8
C. -8
D. -10
Đáp án D.
Ta có:
9 x + 9 − x = 2 ⇔ 3 x 2 + 1 3 x 2 = 23 ⇔ 3 x 2 + 2.3 x . 1 3 x + 1 3 x 2 = 25 ⇔ 3 x + 3 − x = 5.
Vậy A = 5 + 5 1 − 5 = 10 − 4 = − 5 2 = a b → a . b = − 5 .2 = − 10.
Biết rằng 9x + 9–x = 23. Khi đó biểu thức A = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10.
B. 8.
C. -8.
D. -10.
Đáp án D.
Ta có 9x + 9–x = 23
⇔ 3 x 2 + 1 3 x 2 = 23 ⇔ 3 x 2 + 2 . 3 x . 1 3 x + 1 3 x 2 = 25
=> 3x + 3–x = 5.
V ậ y A = 5 + 5 1 - 5 = - 5 2 = a b
→ a . b = - 5 . 2 = - 10 .
Cho 9 x + 9 − x = 14 , khi đó biểu thức M = 2 + 81 x + 81 − x 11 − 3 x − 3 − x có giá trị bằng:
A. 14
B. 49
C. 42
D. 28
Cho P=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)Rút gọn P
b)Tính giá trị của P khi \(9x^2-10x+1=0\)
c)Tính giá trị của P khi \(x=8-2\sqrt{7}\)
d)Tìm các giá trị của x để P=\(\dfrac{6}{5}\)
e)Tìm x sao cho P=\(\dfrac{x}{5\sqrt{x}-3}\)
f)Tính giá trị của P khi \(x=a^{12}+a^2b^2+b^{12}\) với a, b là các số thực thỏa mãn đồng thời \(a^2+a^2b^2=4\), \(a^2+a^2b^2+b^2=8\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{x}{3\sqrt{x}-1}\)
b) Ta có: \(9x^2-10x+1=0\)
\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào P, ta được:
\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)
c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:
\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)
\(=\dfrac{-10+16\sqrt{7}}{47}\)
cho p=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)rút gọn p
b)tính giá trị của p khi\(9x^2-10x+1=0\)
c)tính giá trị của p khi \(x=8-2\sqrt{7}\)
d)tìm các giá trị của x dể p=\(\dfrac{6}{5}\)
e)tìm x sao cho p=\(\dfrac{x}{5\sqrt{x}-3}\)
lm nhanh giúp mk nhé
a)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(P=\dfrac{x+1}{3\sqrt{x}-1}\)
b) Từ phương trình suy ra \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
Vói x=1
\(P=\dfrac{1}{3\sqrt{1}-1}=\dfrac{1}{2}\)
Với x= 1/9
\(P=\dfrac{\dfrac{1}{9}}{3\sqrt{\dfrac{1}{9}}-1}\) không có nghiệm
Cho 9x +9x =23. Khi M =\(\frac{5+3^x+3^{-x}}{1-3^x-3^{-x}}\) có giá trị bằng?
ta có X =log(9,23/2)
TỪ ĐÓ THẤY X VÀO BIỂU THỨC THÌ TA RA ĐC ĐÁP ÁN .
Cho số thực x thỏa mãn điều kiện 9 x + 9 - x = 23 . Tính giá trị của biểu thức P = 5 + 3 x + 3 - x 1 - 3 x - 3 - x
A. - 5 2
B. 1 2
C. 3 2
D. 2
Ta có 3 x + 3 - x 2 = 9 x + 9 - x + 2 = 23 + 2 = 25
Suy ra 3 x + 3 - x = 5
Do đó P = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = 5 + 5 1 - 5 = - 5 2
Đáp án A
cho biểu thức
A =(\(\frac{x^2+3x}{x^3+3x^2+9x+27}\)+\(\frac{3}{x^2+9}\)) :( \(\frac{1}{x-3}\)- \(\frac{6x}{x^3-3x^2+9x-27}\))
a, rút gọn phân thức P
b, với x>0 thì P không thỏa mãn những giá trị nào
c, tìm giá trị nguyên của x để P có giá trị nguyên
Không chép lại đề nhé:
\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)
\(=\frac{x+3}{x-3}\)
b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)
c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)
Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay
(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)
Thế vào sẽ tìm được A
ĐKXĐ thì b tự làm nhé