Đáp án D.
Ta có 9x + 9–x = 23
⇔ 3 x 2 + 1 3 x 2 = 23 ⇔ 3 x 2 + 2 . 3 x . 1 3 x + 1 3 x 2 = 25
=> 3x + 3–x = 5.
V ậ y A = 5 + 5 1 - 5 = - 5 2 = a b
→ a . b = - 5 . 2 = - 10 .
Đáp án D.
Ta có 9x + 9–x = 23
⇔ 3 x 2 + 1 3 x 2 = 23 ⇔ 3 x 2 + 2 . 3 x . 1 3 x + 1 3 x 2 = 25
=> 3x + 3–x = 5.
V ậ y A = 5 + 5 1 - 5 = - 5 2 = a b
→ a . b = - 5 . 2 = - 10 .
Cho hàm số f ( x ) = 3 x - 4 + ( x + 1 ) . 2 7 - x - 6 x + 3 . Giả sử m 0 = a b a , b ∈ ℤ , a b l à p h â n s ố t ố i g i ả n là giá trị nhỏ nhất của tham số thực m sao cho phương trình f 7 - 4 6 x - 9 x 2 + 2 m - 1 = 0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P = a + b 2
A. 11
B. 7
C. -1
D. 9
Cho ∫ 0 9 16 1 x + 1 + x = a - b ln 2 c với a,b,c là các số nguyên dương và a/b tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Cho f(x) là hàm liên tục trên đoạn [0;a] thỏa mãn f ( x ) . f ( a - x ) = 1 f ( x ) > 0 ; ∀ x ∈ [ 0 ; a ] và ∫ 0 a d x 1 + f ( x ) = b a c , trong đó b, c là hai số nguyên dương và b/c là phân số tối giản. Khi đó b+c có giá trị thuộc khoảng nào dưới đây?
A. (11;22)
B. (0;9)
C. (7;21)
D. (2017;2020)
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b ln 2 - ln c với a , b , c là các số nguyên dương và a b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Cho ∫ 0 1 3 x + 3 - 10 ( x + 3 ) 2 d x = 3 ln a b - 5 6 , trong đó a, b là 2 số nguyên dương và a/b là phân số tối giản. Mệnh đề nào dưới đây đúng?
A. ab = – 5
B. ab = 12
C. ab = 6
D. ab = 5/4
Cho các số thực x,y thay đổi thỏa mãn log 2 sin x + 2 cos x + 2 = 2 cos x - sin x + 3 . Gọi - a b với a , b ∈ ℕ * , a b tối giản là giá trị nhỏ nhất của biểu thức P = 3 cos 3 x + sin 2 x - 5 cos x Tính T = a +b
A. T = 200
B. T = 257
C. T = 210
D. T = 240
Cho hàm số f ( x ) = x 3 + 3 a x 2 + 3 x + 3 có đồ thị (C) và g ( x ) = x 3 + 3 b x 2 + 9 x + 5 có đồ thị (H), với a, b lá các tham số thực. Đồ thị (C), (H) có chung ít nhất 1 điểm cực trị. Tìm giá trị nhỏ nhất của biểu thức P = a + 2 b
A. 21
B. 2 6 + 6.
C. 3 + 5 3 .
D. 2 6 .
Biết rằng ∫ 0 5 x 1 + 1 + x d x = a 6 - b c , trong đó a , b , c ∈ N đồng thời b c là phân số tối giản. Tính giá trị biểu thức P = a + b + c.