Mấy bạn giúp mình với
Bài 1:Chứng minh rằng:
a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
b)\(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+...+\frac{1}{400}=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}\)
1/Tính A=\(0,5^3+1^3+1,5^3+...+5^3\)
biết \(1^3+2^3+3^3+...+10^3=3025\)
2/Tính:
\(\left(\frac{16}{3}-\sqrt{\frac{40}{9}}^{^0}\right)\left(\frac{17}{3}-\sqrt{\frac{40}{9}}^0\right)...\left(\frac{30}{3}-\sqrt{\frac{40}{9}}^0\right)\)
giải phương trình
a,\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-20)+(x-19)+(x-18)+...+100+101=101
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
Tìm A :
1 / A = ( 1 -\(\frac{1}{3}\)) + ( 1 - \(\frac{1}{15}\)) + ( 1 - \(\frac{1}{35}\)) + ( 1 - \(\frac{1}{63}\))
2 / A = ( 1 -\(\frac{1}{10}\)) + ( 1 - \(\frac{1}{40}\)) + ( 1 - \(\frac{1}{88}\)) + ( 1 - \(\frac{1}{154}\))
3 / A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+....+\frac{9998}{9999}\)
4 / A = \(\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+...+\frac{1119}{1120}\)
5 / A = \(\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+\frac{153}{154}\)
Trình bày cách làm hộ mình nha ! Cảm ơn rất nhiều !
bạn ơi tách ra thừa số chung rồi làm như bình thường nha
1, A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)\)
=4-\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)
= 4-\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)\)
=4-\(\left(1-\frac{1}{9}\right)\)
= 4-\(\frac{8}{9}\)
= \(\frac{7}{9}\)
Câu 2 tương tự như câu 1
A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{10}+\frac{1}{40}+...+\frac{1}{154}\right)\)
A= 4 -\(\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{11.14}\right)\)
Bạn tự làm tiếp
Chứng minh rằng:
1)B=\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)
2)C=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}\)<\(\frac{1}{48}\)
3)D=\(\frac{11}{9}+\frac{18}{16}+\frac{27}{25}+...+\frac{1766}{1764}\)
\(40\frac{20}{43}< D< 40\frac{20}{21}\)
giải phương trình
a,(\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\))(x-1)+\(\frac{1}{10}x\)=\(x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-10)+(x-19)+(x-18)+...+100+101=101
d,(\(\frac{1}{1\cdot51}+\frac{1}{2\cdot52}+\frac{1}{3\cdot53}+...+\frac{1}{10\cdot60}\))x=\(\frac{1}{1\cdot11}+\frac{1}{1\cdot12}+\frac{1}{1\cdot13}\)
Tính:
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Toán Lớp 6
Tìm x : a) x + \(\frac{4}{7}=1\)
b) \(\frac{x}{10}=\frac{2}{5}\)
c) \(\frac{5}{9}-\frac{2}{9}nhânx=\frac{1}{3}\)
d)\(\frac{1}{3}nhânx+40\%nhânx=\frac{1}{15}\)
Bài 1 : Xếp các phân số sau theo thứ tự từ bé đến lớn :
\(a,\frac{7}{8};\frac{7}{13};\frac{7}{12};\frac{7}{10}\)
\(b,\frac{1}{4};\frac{3}{10};\frac{9}{40};\frac{3}{8}\)
\(a,\frac{7}{13};\frac{7}{12};\frac{7}{10};\frac{7}{8}\)
\(b,\frac{9}{40};\frac{1}{4};\frac{3}{10};\frac{3}{8}\)