giải phương trình
a,(\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\))(x-1)+\(\frac{1}{10}x\)=\(x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-10)+(x-19)+(x-18)+...+100+101=101
d,(\(\frac{1}{1\cdot51}+\frac{1}{2\cdot52}+\frac{1}{3\cdot53}+...+\frac{1}{10\cdot60}\))x=\(\frac{1}{1\cdot11}+\frac{1}{1\cdot12}+\frac{1}{1\cdot13}\)