Tính \(\sqrt{13-\sqrt{160}}+\sqrt{53-4\sqrt{9}}\)
\(\sqrt{13-\sqrt{160}}\) + \(\sqrt{53+4\sqrt{90}}\)
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+12\sqrt{10}}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}-2\sqrt{2}\)
\(=2\sqrt{5}\)
`\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}`
`=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}`
`=\sqrt{(2\sqrt{2}-\sqrt{5})^2}+\sqrt{(3\sqrt{5}+2\sqrt{2})^2}`
`=|2\sqrt{2}-\sqrt{5}|+3\sqrt{5}+2\sqrt{2}`
`=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}`
`=4\sqrt{2}+2\sqrt{5}`
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}-\sqrt{53-12\sqrt{10}}\)
\(=\sqrt{13-2\cdot2\sqrt{2}\cdot\sqrt{5}}-\sqrt{53-2\cdot3\sqrt{5}\cdot2\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}-2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}+2\sqrt{2}\)
\(=4\sqrt{2}-4\sqrt{5}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-\sqrt{4^2\cdot10}}-\sqrt{53+4\sqrt{3^2\cdot10}}\)
\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot2\sqrt{2}\cdot3\sqrt{5}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=\left|2\sqrt{2}-\sqrt{5}\right|-\left|3\sqrt{5}+2\sqrt{2}\right|\)
\(=2\sqrt{2}-\sqrt{5}-\left(3\sqrt{5}+2\sqrt{2}\right)\)
\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)
\(=-4\sqrt{5}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-2\sqrt{40}}-\sqrt{53+2\sqrt{360}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{8}+\left(\sqrt{8}\right)^2}-\sqrt{\left(\sqrt{45}\right)^2+2\sqrt{45}.\sqrt{8}+\left(\sqrt{8}\right)^2}\)
\(=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}\)
\(=\sqrt{8}-\sqrt{5}-\left(\sqrt{45}+\sqrt{8}\right)\)
\(=\sqrt{8}-\sqrt{5}-3\sqrt{5}-\sqrt{8}\)
\(=-4\sqrt{5}\)
tính M =\(\sqrt{13-\sqrt{160-\sqrt{53+4\sqrt{90}}}}\)
Tính \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(\sqrt{13-4\sqrt{10}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.3.\sqrt{5}+\left(3\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}\)
= \(\) \(2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}=-4\sqrt{5}\)
bạn giải giúp mình nha! mình sẽ **** nhiệt tình
1 Tính
\(P=\sqrt{1+99999...9^2+0,99999...9^2}\)( n chứ số 9)
\(F=\sqrt{13-\sqrt{160}}-\sqrt{53-4\sqrt{9}}\)
\(H=\sqrt{0.25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Tính
\(a,F=\sqrt{13-\sqrt{160}}-\sqrt{53-4\sqrt{9}}\)
\(b,A=\sqrt{13-30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(c,D=\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
\(d,M=\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
Rút gọn biểu thức:
a)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
b)\(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)
\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)
a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}\)
b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)
=4
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
Bài này không sai đề , tớ làm lại cho :
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}-\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}=\text{ |}2\sqrt{2}-\sqrt{5}\text{ |}-\text{ |}3\sqrt{5}+2\sqrt{2}\text{ |}=4\sqrt{2}-4\sqrt{5}\)
Đề này mình làm không ra nên mình sẽ sửa đề.
Giải:
\(\sqrt{14-\sqrt{160}}-\sqrt{49+4\sqrt{90}}\)
\(=\sqrt{14-4\sqrt{10}}-\sqrt{49+12\sqrt{10}}\)
\(=\sqrt{10-4\sqrt{10}+4}-\sqrt{40+12\sqrt{10}+9}\)
\(=\sqrt{\left(\sqrt{10}\right)^2-2.\sqrt{10}.2+2^2}-\sqrt{\left(2\sqrt{10}\right)^2+2.2\sqrt{10}.3+3^2}\)
\(=\sqrt{\left(\sqrt{10}-2\right)^2}-\sqrt{\left(2\sqrt{10}+3\right)^2}\)
\(=\sqrt{10}-2-\left(2\sqrt{10}+3\right)\)
\(=\sqrt{10}-2-2\sqrt{10}-3\)
\(=-\sqrt{10}-5\)
Vậy ...
Nếu sai mong bạn thông cảm
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}-\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=|2\sqrt{2}-\sqrt{5}|-|3\sqrt{5}+2\sqrt{2}|\)
\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)
\(=-4\sqrt{5}\)