Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Nguyễn Thị Thu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2017 lúc 13:13

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.

Vũ Thanh Mai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
31 tháng 8 2017 lúc 11:03

Ta có : A = (2 - x)(x + 4)

= 2x - x2 + 8 - 4x

= -x2 - 6x + 8 

= -(x2 + 6x) + 8

= -(x2 + 6x + 9 - 9) + 8

= -(x2 + 6x + 9) + 9 + 8

A = -(x + 3)2 + 17

Vì - (x + 3)2 \(\le0\forall x\)

Nên : A = -(x + 3)2 + 17 \(\le17\forall x\)

Vậy Amax = 17 khi x = -3

Annh Phươngg
Xem chi tiết
Khôi Bùi
17 tháng 9 2018 lúc 21:44

a ) \(C=5x-3x^2+2\)

\(=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(=-3\left(x^2-2x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)

\(=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{49}{36}\right]\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy GTLN của C là : \(\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

b ) \(D=-8x^2+4xy-y^2+3\)

\(=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(=-\left(2x-y\right)^2-4x^2+3\le3\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\4x^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\)

Vậy GTLN của D là : \(3\Leftrightarrow x=y=0\)

Nguyễn Thanh Khôi Cuber
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 22:18

\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)

\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)

Dấu ''='' xảy ra khi x = 4 ; y = -2 

phùng thị thu hải
Xem chi tiết
hoaan
Xem chi tiết
Dương
20 tháng 7 2018 lúc 20:30

Ta có:

\(C=2x^2+3y^2+4xy-8x-2y+18\)

\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)

\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)

\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)

Hay x = 5 , y = -3

Phạm Thị Hằng
Xem chi tiết
Đinh Trọng Chiến
17 tháng 11 2016 lúc 21:55

-8x2+4xy-y2+10=10-(4x2-4xy+y2)-4x2=10-(2x-y)2-(2x)2

vi-(2x-y)2-(2x)2 ≤0

=>10-(2x-y)2-(2x)2≤10

dau bang say ra khi (2x-y)2-(2x)2=0 

vậy gái trị nhỏ nhất là:10

Trà My
20 tháng 11 2016 lúc 19:57

\(Q=-8x^2+4xy-y^2+10\)<=>\(Q=10-4x^2+4xy-y^2-4x^2\)

<=>\(Q=10-\left[\left(2x^2\right)-4xy+y^2\right]-\left(2x\right)^2\)<=>\(Q=10-\left(2x-y\right)^2-\left(2x\right)^2\)

<=>\(Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\\left(2x\right)^2\ge0\end{cases}\Leftrightarrow\left(2x-y\right)^2+\left(2x\right)^2\ge0}\)\(\Leftrightarrow-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le0\)

\(\Leftrightarrow Q=10-\left[\left(2x-y\right)^2+\left(2x\right)^2\right]\le10\)

=>Qmax=10 <=> \(\left(2x-y\right)^2=\left(2x\right)^2=0\)<=>\(2x-y=2x=0\) <=>\(x=y=0\)

Vậy Qmax=10 tại x=y=0

....
Xem chi tiết
missing you =
4 tháng 6 2021 lúc 22:10

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

missing you =
5 tháng 6 2021 lúc 6:03

b, ta có : \(x+y=1=>2x+2y=2\)

\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)

\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)

=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)