CMR: S=1/2017+1 + 1/2017+2 + ...+1/3*2017+1 >1
CMR: S=1/(2017+1)+1/(2017+2)+...+1/(3.2017+1)>1
1, S=1^2017+2^2017+..+2018^2017 . S : 5 dư mấy ?
2, x,y,z thoả mãn x^2+2y^2+10z^2=2016 . CMR xy-4yz-zx >= -1008
3, Tìm các cặp (p;q) nguyên tố thoả p(p-1)=q(q^2-1)
Mình xin làm bài nhé ;)
xy-4yz-zx>=-1008 <=> 2xy-8yz-2zx+2016 >= 0
<=> 2xy - 8yz-2zx+x^2+2y^2+10z^2 >=0 <=> (x+y-z)^2 +(y-3z)^2 >=0 ( Luôn đúng=> ĐPCM)
P/s: huh? #HoàngPhúc Thành phố Vũng Tàu vậy biết ai tên Nguyễn Thành Trung khÔng :) ?
1, Có : \(1^{2017}+2^{2017}+...+10^{2017}⋮5\Rightarrow1^{2017}+...+2010^{2017}⋮5\)
Mà\(2011^{2017}+...+2018^{2017}\)chia 5 dư 1, suy ra S chia 5 dư 1.
2, chưa bít làm
3, thay vào p=3, q=2 xong biện luận để cm có 1 cặp số (p;q) duy nhất.
KẾT LUẬN: KHOA BẢNG tuổi gì????
Ửa,,,, sao mik lại ko đc CTV nhỉ,,,
bạn viết khó nhìn quá,,,dùng công cụ đi
Tìm giá trị của tổng \(S=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+\dfrac{1}{3}C_{2017}^2+...+\dfrac{1}{2018}C_{2017}^{2017}\)
Xét khai triển:
\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)
Lấy tích phân 2 vế:
\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)
\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)
Vậy \(S=\dfrac{2^{2018}-1}{2018}\)
cho các số a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
cmr: \(\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}=\dfrac{1}{a^{2017}+b^{2017}+c^{2017}}\)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.
CMR nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Cho P= 12017+22017+32017+...+20162017 , Q= 1+2+3+...2016
CMR: P chia hết cho Q
cho n là một số nguyên dương CMR tổng T= 1^2017 +2^2017+....+n^2017 chia hết cho 1+2+3+....+n