Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Anh Dương
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 17:07

`sqrta+1>sqrt{a+1}`

`<=>a+2sqrta+1>a+1`

`<=>2sqrta>0`

`<=>sqrta>0AAa>0`

`sqrt{a-1}<sqrta`

`<=>a-1<a`

`<=>-1<0` luôn đúng

`sqrt6-1>sqrt3-sqrt2`

`<=>sqrt6-sqrt3+sqrt2-1>0`

`<=>sqrt3(sqrt2-1)+sqrt2-1>0`

`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng

Bui Duy Anh
Xem chi tiết
Nguyễn Hữu Thế
26 tháng 9 2015 lúc 17:43

Phạm Lê Quỳnh Nga không làm gì mà cũng đòi xin l ike giống như chó không công mà đòi xin mồi

Sayaka
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 10:03

\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)

Đỗ Đức Lợi
Xem chi tiết
fan FA
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

♥
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

♥
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2019 lúc 14:53

Cách 1: Sử dụng các phép biến đổi tương đương để chứng minh bất đẳng thức.

Ta có:

Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Do đó: Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10 (đpcm)

Cách 2: Sử dụng bất đẳng thức Cô-si để chứng minh bất đẳng thức.

Áp dụng bất đẳng thức Cô-si cho hai số dương Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10 và √b ta có:

Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Dấu “=” xảy ra khi và chỉ khi a= b > 0

Lê Ngọc Gia Hân
Xem chi tiết
Rhider
18 tháng 2 2022 lúc 15:35

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Đỗ Tuệ Lâm
18 tháng 2 2022 lúc 15:38

undefined

Phạm khang
22 tháng 2 2022 lúc 10:05

Cho xin Zalo với

Hàn Vũ Nhi
Xem chi tiết
Kiệt Nguyễn
6 tháng 11 2019 lúc 11:52

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

Khách vãng lai đã xóa
Thanh
24 tháng 8 2024 lúc 12:24

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

super xity
Xem chi tiết
bui manh duc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2017 lúc 12:57

a < b ⇔ a + (-b) < b +(-b) ⇔ a - b < 0