Rút gọn rồi tính giá trị biểu thức vói x=-1, y=-2
A= ( x+y) ^2 +( x+y) ^2 - 2 ( x+y) ( y-x)
rút gọn rồi tính giá trị biểu thức
B=x^2.(x+y)-y.(x^2-y)+2014 với x=1;y=-1
B=x2(x+y)-y(x2-y)+2014
= x3+x2y-x2y+y2+2014
= x3+y2+2014
= 13+(-1)2+2014
= 1+1+2014
=2016
B = x2.x+x2.y-y.x2+y.y+2014 Uy tín:)
= x3+x2y-x2y+y2+2014
= x3+y2+2014
Thay x=1;y=-1. Ta có:
B = 13+(-1)2+2014
= 1+1+2014
= 2016
Ta có: \(B=x^2\left(x+y\right)-y\left(x^2-y\right)+2014\)
\(=x^3+x^2y-x^2y-y^2+2014\)
\(=x^3-y^2+2014\)
\(=1-1+2014\)
=2014
Thực hiện phép nhân, rút gọn rồi tính giá trị biểu thức A = x(x^2-y) - x^2(x+y) + y(x^2+x) tại x= -80 y=-340
\(A=x^3-xy-x^3-x^2y+x^2y+xy\)
\(A=0\)
A=x^3-xy-x^3-x^2y+x^2y+xy
A=0
Rút gọn rồi tính giá trị của biểu thức:(x-y)(x^2+xy+y^2)-2y^3 tại x=1/2 và y=2/3
Bài 1: Rút gọn rồi tính giá trị của mỗi biểu thức sau:
a) M = 1/2 x²y . (-4)y
khi x + √2 ; y = √3
b) N = xy √5x²
khi x = -2; y = √5
Bài 2 : Tính giá trị tổng 4 đơn thức khi x = -6; y= 15
: 11x²y³ ; 10/7x²y³; -3/7x²y³; -12x²y³
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0
Rút gọn rồi tính giá trị biểu thức
Q=x(x^2+y)-x^2(x+y)+y(x^4+x)
tại x=2, y=1/2
\(Q=x\left(x^2+y\right)-x^2\left(x+y\right)+y\left(x^4+x\right)\)
=> \(Q=\left(x^3+xy\right)-\left(x^3+x^2y\right)+\left(x^4y+xy\right)\)
=> \(Q=\left(x^3-x^3\right)+\left(xy+xy\right)+\left(x^4y-x^2y\right)\)
=> \(Q=x^4y-x^2y+2xy\)
=> \(Q=\frac{2^4.1}{2}-\frac{2^2.1}{2}+\frac{2.2.1}{2}\)
=> \(Q=2^3-2+2=2^3=8\)
Vậy \(Q=8\)
1) Rút gọn biểu thức rồi tính giá trị của A:
A=4*x^2-4/x*y-y+x-1 với x=-1; y=-387*1/5
rút gọn rồi tính giá trị biểu thức
A=x.(x+y)-y.(x+y) với x=-1/2;y=--2
A = x ( x + y ) - y ( x + y )
A = ( x + y ) ( x - y )
A = x\(^2\) - y\(^2\)
Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có
\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)
\(A=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
\(=x^2-y^2\)
Thay \(x=-\dfrac{1}{2}\) và \(y=-2\) vào biểu thức \(A\), ta có:
\(A=\left(-\dfrac{1}{2}\right)^2-\left(-2\right)^2\)
\(=\dfrac{1}{4}-4\)
\(=-\dfrac{15}{4}\)
THực hiện phép nhân , rút gọn rồi tính giá trị của biểu thức :
x( x^2 - y ) - x^2 ( x + y ) + y( x^2 - x )
x( x^2 - y ) - x^2 ( x + y ) + y( x^2 - x )
=x3-xy-x3-x2y+x2y-xy
=-2xy
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)