Tập hợp giá trị x thỏa mãn
X/-4=-9/x
Cho 2 số thực dương x,y thỏa mãn
x + y = 4xy
CMR : Tập giá trị của P = xy là \(\left[\dfrac{1}{4};\dfrac{1}{3}\right]\)
Lời giải:
Áp dụng BĐT AM-GM:
$(4xy)^2=(x+y)^2\geq 4xy$
$\Rightarrow 4xy\geq 1\Rightarrow xy\geq \frac{1}{4}$
Bây giờ, cho $x=2; y=\frac{2}{7}$ thỏa mãn điều kiện đề. Nhưng $xy=\frac{4}{7}>\frac{1}{3}$ nên tập giá trị $P=xy$ không thể là $[\frac{1}{4}; \frac{1}{3}]$ được.
Câu 8: Số giá trị của x thỏa mãnx^2+7x+12=0 là ?
Tập hợp các giá trị x thỏa mãn: x/-4=-9/x là
\(\frac{x}{-4}=-\frac{9}{x}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=\pm6\)
Vậy x= 6 ; x = - 6
Vì \(\frac{x}{-4}\)=\(\frac{-9}{x}\)
\(\Rightarrow\)x.x=-4.-9
\(\Rightarrow\)\(x^2\)=36
\(\Rightarrow\)\(\left[\begin{array}{nghiempt}x=-6\\x=6\end{array}\right.\)
Vậy x=-6 hoặc x=6
Vì c/-4=-9/x =>x^2=36 =>x=6 hoặc x=-6 Vậy x=6 hoặc x=-6
1) Tập hợp các giá trị x thỏa mãn: x/-4=-9/x là
2) Số giá trị x thỏa mãn 2x/42=28/3x là
3) Tập hợp các giá trị x nguyên để biểu thức D = l2x +2,5l + l2x-3l đạt giá trị nhỏ nhất là {}
Tập Hợp giá trị x thỏa mãn đẳng thức x^6=9.x^4 là A=(...)
tập hợp giá trị thỏa mãn 4(x-1)^2-9(x+2)^2=0
1/ 4(x-1)² = 9(x+2)² ⇔ 2I x-1 I = 3I x+2 I ⇔ 2(x-1) = 3(x+2) hoặc 2(x-1) = -3(x+2)
⇔ 2(x-1) = 3(x+2) hoặc 2(x-1) = -3(x+2)
⇔ 2x - 2 = 3x + 6 hoặc 2x - 2 = -3x - 6
⇔ x = -8 hoặc x = -4/5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2/ x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3/ M = (x-1)(x+5)(x² + 4x + 5) = (x² + 5x - x - 5)(x² + 4x + 5)
= (x² + 4x - 5)(x² + 4x + 5). Đặt x² + 4x = y ⇒ M = (y - 5)(y + 5) = y² - 25
Do y² ≥ 0 nên y² - 25 ≥ -25 ⇒ M ≥ -25. Dấu '=' xảy ra ⇔ y² = 0 ⇔ y = 0
⇒ x² + 4x = y = 0 ⇔ x(x + 4) = 0 ⇔ x = 0 hoặc x = -4
Vậy min(giá trị nhỏ nhât) M = -25, đạt được ⇔ x = 0 hoặc x = -4
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4/ P = -x² - 4x - y² + 2y = -x² - 4x - y² + 2y - 4 - 1 + 5
= (-x² - 4x - 4) + (-y² + 2y - 1) + 5 = -(x + 2)² - (y - 1)² + 5
Do (x + 2)² ≥ 0 và (y - 1)² ≥ 0 nên -(x + 2)² ≤ 0 và - (y - 1)² ≤ 0
⇒ -(x + 2)² - (y - 1)² ≤ 0 ⇒ -(x + 2)² - (y - 1)² + 5 ≤ 5 ⇒ P ≤ 5.
Dấu '=' xảy ra ⇔ (x + 2)² = 0 và (y - 1)² = 0 ⇔ x = -2 và y = 1
Vậy max (giá trị lớn nhất) P = 5, đạt được ⇔ x = -2 và y = 1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5/ Do AB = AD và AB = 5cm ⇒ AD = 5 cm, Xét ΔABD vuông tại A, áp dụng định lý Py-ta-go ta tính được BD² = 50 cm. Do AB // CD nên góc ABD = góc BDC
Xét ΔABD và ΔBDC có góc DAB = góc DBC = 90độ , góc ABD = góc BDC (c/m trên) ⇒ ΔABD ~ ΔBDC(g.g) ⇒ AB/BD = BD/CD ⇒ AB.CD = BD² ⇒ CD = BD²/AB = 50/5 = 10cm
Áp dụng công thức tính S ta tính được S(ABCD) = (AB+CD).AD/2 = (5+10).5/2 = 37,5 cm²
Tập hợp các giá trị x thỏa mãn:\(\frac{x}{4}=\frac{-9}{x}\)
Tập hợp các giá trị x thỏa mãn:x/-4=-9/x là { } (Nhập kết quả theo giá trị tăng dần, ngăn cách nhau bởi dấu ";")
Tập hợp các giá trị của x thỏa mãn 4(x-1)^2-9(x+2)^2=0