Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BÍCH THẢO
Xem chi tiết
Dương Minh Hoàng
21 tháng 8 2023 lúc 15:18

a,

`3A=3+3^3+3^3+...+3^{53}`

`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`

`2A=3^{53}-1`

`A=(3^{53}-1)/2`

b,

`A=1+3+3^3+3^3+...+3^{52}`

`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`

`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`

`A=(1+3+3^2)*(1+3^3+....+3^{50})`

`A=13*(1+3^3+....+3^{50})`

Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `

Vậy `A \vdots 13 `

Khang
Xem chi tiết
when the imposter is sus
10 tháng 9 2023 lúc 10:19

\(A=1+3+3^2+...+3^{50}\)

\(3A=3+3^2+3^3+...+3^{51}\)

\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)

\(2A=3^{51}-1\)

\(A=\dfrac{3^{51}-1}{2}\)

Nguyễn Tú Hà
Xem chi tiết
HT.Phong (9A5)
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 18:48

\(\Leftrightarrow-B=1+3+3^2+...+3^{49}\\ \Leftrightarrow-3B=3+3^2+3^3+...+3^{50}\\ \Leftrightarrow-3B-B=3+3^2+...+3^{50}-1-3-...-3^{49}\\ \Leftrightarrow-4B=3^{50}-1\\ \Leftrightarrow B=\dfrac{1-3^{50}}{4}\)

Ngoc Linh
Xem chi tiết
Lê Đăng Trường Giang
Xem chi tiết
Nguyễn Đăng Nhân
6 tháng 11 2023 lúc 14:51

\(A=3^0+3^1+3^2+...+3^{138}\)

\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)

\(A=(3^{139}-3^0):2\)

\(A=\left(3^{139}-1\right):2\)

Kiều Vũ Linh
6 tháng 11 2023 lúc 15:21

Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹

⇒ 2A = 3A - A

= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)

= 3¹³⁹ - 1

⇒ A = (3¹³⁹ - 1)/3

⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

= (3¹³⁹ - 1)/3 + 3

= (3¹³⁹ + 2)/3

Kiều Vũ Linh
6 tháng 11 2023 lúc 15:05

Đề có dư số 3 không em?

Đạt Nguyễn
Xem chi tiết
Đặng Phương Thảo
28 tháng 7 2015 lúc 11:33

S có 30 số hạng. Nhóm thành 3 nhóm, mỗi  nhóm 10 số hạng

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{42}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S

Nguyễn Vũ Diệu Ly
13 tháng 5 2016 lúc 22:11

Bn Đặng Phương Thảo giỏi quá 

Phạm Hà Sơn
11 tháng 2 2017 lúc 21:27

bạn pt lớp mấy dzậy?

Xem chi tiết
ST
10 tháng 1 2018 lúc 12:34

\(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}\)

\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)

Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)

Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\)

Phước Nguyễn
Xem chi tiết
Phước Nguyễn
Xem chi tiết
Đặng Phương Thảo
28 tháng 7 2015 lúc 11:40

Mình trả lời cho 1 bạn rồi đó

ĐÂY NÈ