Giá trị nhỏ nhất của biểu thức :
\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + / 2y + 1 / - 2,5
Giá trị nhỏ nhất của biểu thức :\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)là
Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)
Vậy GTNN của biểu thức trên là -2,5
Giá trị nhỏ nhất của biểu thức: \(C=\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)
Vì: \(\begin{cases}\frac{1}{3}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+2\right|\ge0\end{cases}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
Vậy GTNN của C là -2,5 khi \(\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Giá trị nhỏ nhất của biểu thức C=\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2.5\)
Giá trị nhỏ nhất của biểu thức là
Vì \(\left(x-\frac{2}{5}\right)^2\ge0\) ,\(\forall x\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2\ge0\) ,\(\forall x\)
\(\left[2y+1\right]\ge0\) ,\(\forall y\)
\(\Rightarrow MinC=-2,5\)
Dấu "=" xảy ra \(\Leftrightarrow\) x=2/5 và y= -1/2
Giá trị nhỏ nhất của biểu thức là
GTNN của biểu thức là -2,5.
Chúc bạn học tốt!!!
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
a) Tìm giá trị lớn nhất của biểu thức: B= 5-\(\left|\frac{1}{3}x+2\right|\)
b) Tìm giá trị nhỏ nhất của biểu thức:C=\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1-x^2y^2\right)^2\)
a) Cho phương trình \(x^2-\left(m+1\right)x+m-3=0\) (m là tham số). Gọi x1,x2 là 2 nghiệm phân biệt của phương trình, tìm giá trị nhỏ nhất của biểu thức:
\(\frac{1}{\left(x1-1\right)^2}+\frac{1}{\left(x2-1\right)^2}\)
b) Cho x,y,z thay đổi thỏa mãn \(\frac{1}{x+2y}+\frac{1}{y+2z}+\frac{1}{z+2x}=1\). Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)