giải phương trình nghiệm nguyên
a)5x-7y=1
b)x-3y=5
c)2x-5y=10
Giải phương trình nghiệm nguyên
a) \(x^2-3y^2=17\)
b) \(x^2-5y^2=17\)
c) \(15x^2-7y^2=9\)
d) \(x^2+xy+y^2=x^2y^2\)
Giải các hệ phương trình sau:
a.|3x - y = 5
|4x + 2y = 10
b.|5x + 2y = 9
|x + 5y = 11
c.|3x + y = 10
|4x - 3y = 9
d.|4x + 3y = 22
|5x + 3y = 26
e.|4x - 3y = 5
|5x
Giải các hệ phương trình sau:
a.|3x - y = 5
|4x + 2y = 10
b.|5x + 2y = 9
|x + 5y = 11
c.|3x + y = 10
|4x - 3y = 9
d.|4x + 3y = 22
|5x + 3y = 26
e.|4x - 3y = 5
|5x + 3y = 13
Giải các hệ phương trình sau:
a.{3x - y = 5
4x + 2y = 10
b.{5x + 2y = 9
x + 5y = 11
c.{3x + y = 10
4x - 3y = 9
d.{4x + 3y = 22
5x + 3y = 26
e.{4x - 3y = 5
5x + 3y = 13
\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a) \(\begin{cases} 3x -y=5\\ 4x +2y=10 \end{cases} \)
\(\begin{cases} 12x - 4y= 20\\ 12x +6y= 30 \end{cases} \)
\(\begin{cases} -10y=-10\\ 3x-y=5 \end{cases} \)
\(\begin{cases} y=1\\ 3x-1=5 \end{cases} \)
\(\begin{cases} y=1\\ 3x=6 \end{cases} \)
\(\begin{cases} y=1\\ x=2 \end{cases} \)
Hpt có nghiệm duy nhất: {1;2}
b)\(\begin{cases} 5x +2y=9\\ x+5y=11 \end{cases} \)
\(\begin{cases} 5x+2y=9\\ 5x+25y=55 \end{cases} \)
\(\begin{cases} -23y=-46\\ x+5y=11 \end{cases} \)
\(\begin{cases} y=2\\ x+ 5*2=11 \end{cases} \)
\(\begin{cases} y=2\\ x+10=11 \end{cases} \)
Hpt có nghiệm duy nhất:{1;2}
c)\(\begin{cases} 3x+y=10\\ 4x-3y=9 \end{cases} \)
\(\begin{cases} 12x+4y=40\\ 12x-9y=27 \end{cases} \)
\(\begin{cases} 13y=13\\ 3x+y=10 \end{cases} \)
\(\begin{cases} y=1\\ 3x+1=10 \end{cases} \)
\(\begin{cases} y=1\\ 3x=9 \end{cases} \)
hpt có nghiệm duy nhất:{1;3}
d)\(\begin{cases} 4x+3y=22\\ 5x+3y=26 \end{cases} \)
\(\begin{cases} 20x+15y=110\\ 20x+12y=104 \end{cases} \)
\(\begin{cases} 3y=6\\ 4x+3y=22 \end{cases} \)
\(\begin{cases} y=2\\ 4x+3*2=22 \end{cases} \)
\(\begin{cases} y=2\\ 4x+6=22 \end{cases} \)
hệ phương trình có nghiệm duy nhất:{2;4}
e)\(\begin{cases} 4x-3y=5\\ 5x+3y=13 \end{cases} \)
\(\begin{cases} 20x-15y=25\\ 20x+12y=52 \end{cases} \)
\(\begin{cases} -27y=-27\\ 4x-3y=5 \end{cases} \)
\(\begin{cases} y=1\\ 4x-3*1=5 \end{cases} \)
\(\begin{cases} y=1\\ 4x-3=5 \end{cases} \)
Hệ phương trình có nghiệm duy nhất là:{1;2}
Giải các phương trình sau:
a.{3x + 2y = 14
5x + 3y = 1
b.{-x + 2y - 6 = 0
5x - 3y - 5 = 0
a: Ta có: \(\left\{{}\begin{matrix}3x+2y=14\\5x+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=70\\15x+9y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=67\\3x=14-2y=14-2\cdot67=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\y=67\end{matrix}\right.\)
b: Ta có: \(\left\{{}\begin{matrix}-x+2y-6=0\\5x-3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+10y=30\\5x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\2y-x=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
Giải phương trình:
7y+6-3y=10+5x-4
Mọi người giải giúp mình với ạ....
⇒4y+6=6+5
⇒4y=5x
⇒y=\(\dfrac{5x}{4}\)=1,25x
⇒x=\(\dfrac{4y}{5}\)=0.8y
Hệ phương trình 2 x - 5 y + z = 10 x + 2 y - 3 z = 10 - x + 3 y + 2 z = - 16 có nghiệm là:
A. 2 ; - 2
B. - 2 ; 2 ; 4
C. 2 ; - 2 ; - 4
D. 2 ; - 1 ; 1
⇔ 2 x - 5 y + z = 10 x + 2 y - 3 z = 10 5 y - z = - 6 → ( 1 ) + ( 3 ) 2 x - 5 y + z = 10 x + 2 y - 3 z = 10 2 x = 4 ⇔ 4 - 5 y + z = 10 2 + 2 y - 3 z = 10 x = 2 ⇔ - 5 y + z = 6 2 y - 3 z = 8 x = 2 ⇔ - 15 y + 3 z = 18 2 y - 3 z = 8 x = 2 ⇔ - 13 y = 26 2 y - 3 z = 8 x = 2 ⇔ y = - 2 z = - 4 x = 2
Vậy nghiệm của hệ phương trình đã cho là ( 2; -2; -4).
Chọn C,
Tìm giá trị của x và y biết:
a/ 3x + 5y = 13 và y= x +1
b/ 2x - 3y = 4 và x = y+5
c/ -x +5y = -6 và y = x-2
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)
giải hệ phương trình \(\hept{\begin{cases}5x^2+7y-18=\sqrt{x^4+4}\\x^2+2xy+4=5y+2x\end{cases}}\)