CMR: 5n - 1 \(⋮\) 4 \(\forall\) n
CMR :
\(n^3+5n⋮6\forall n\in Z\)
ta có :
\(n^3+5n=n^2-n+6n\)
\(=\left(n-1\right)n\left(n+1\right)+6n\)
mà \(\left(n-1\right)n\left(n+1\right)⋮2;3\)
\(\Rightarrow\left(n-1\right)n.\left(n+1\right)⋮6\)
\(\Rightarrow6n⋮6\)
\(\Rightarrow n^3+5n⋮6\)
sorry mk nhầm !
chỗ : \(n^2-n+6n\)phải thành
\(n^3-n+6n\)
\(n^3+5n=n.\left(n^2+5\right)=n.\left(n^2-1\right)+6n=n.\left(n-1\right).\left(n+1\right)+6n\)
\(\hept{\begin{cases}n.\left(n+1\right).\left(n-1\right)⋮2,3\text{ hay }n.\left(n+1\right).\left(n-1\right)⋮6\forall n\in Z\\6n⋮6\forall n\in Z\end{cases}}\)
=> đpcm
p/s: cách này có vẻ gọn hơn =)
Cho A= n3 +3n2 + 5n+3.
CMR: A ⋮3 ∀ n ∈ Z+
\(A=n^3+3n^2+5n+3\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n+3\right)\)
\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)
\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)
Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(\Rightarrow...+3\left(n+1\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
\(A=n^3+3n^2+6n-\left(n+3\right)+6\)
\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)
Có: \(n+3\equiv n\)(mod 3)
mà \(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)
nên \(A⋮3\forall n\in Z^+\)
CMR
a, n(n + 1) (2n + 1) \(⋮\)6
b, n5 - 5n3 + 4n \(⋮\)120 \(\forall\)n \(\in\)N
c, n4 + 6n3 + 11n2 + 6n \(⋮\)24 \(\forall\)n \(\in\)Z
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.
CMR n5 + 5n3 + 6n \(⋮\)30 với \(\forall\)n nguyên dương (giải = 2 cách, nhanh mk tick)
a) chứng minh rằng n4-1 ⋮ 8 ∀n lẻ
b) cmr n6-1⋮9 ∀n không là bội của 3
Cho hai dãy số \(\left( {{a_n}} \right)\) và \(\left( {{b_n}} \right)\) được xác định như sau: \({a_n} = 3n + 1;\) \({b_n} = - 5n\).
a) So sánh \({a_n}\) và \({a_{n + 1}},\forall n \in {\mathbb{N}^*}\).
b) So sánh \({b_n}\) và \({b_{n + 1}},\forall n \in {\mathbb{N}^*}\).
a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)
Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({a_{n + 1}} > {a_n}\).
a) Ta có: \({b_{n + 1}} = - 5\left( {n + 1} \right) = - 5n - 5\)
Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) = - 5n - 5 + 5n = - 5 < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({b_{n + 1}} < {b_n}\).
CMR: Với mọi n thuộc N; n>1 thì: 3/9.14+3/14.19+3/19.24+...+3/(5n-1)(5n+4) < 1/15
Cmr n thuộc N ( cmr : n lớn hơn hoặc bằng 2)
3/9.14+3/14.19+...+3/(5n-1).(5n+4)<1/15
CMR : n( n2+1) .(n2+4) \(⋮5\forall n\in Z\)
\(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2+1\right)\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\) chia hết cho 5
cho n thuộc N CMR 5n - 1 chia hết cho 4
sai đề rồi 5n-1 chia hết cho 4 (n thuộc N*)
th1: n=1=> 5n=5
=> 5n-1 =4 chia hết cho 4
th2: n>1=> 5n có hai chữ số tận cùng là 25
=> 5n-1 có CSTC là 24 chia hết cho 4
P/S ghi đề cẩn thận nha
sory mk thiếu 1 trường hợp
TH3: n=0
=> 5n-1=0 chia hết cho 4
còn nữa đề là 5n-1chia hết cho 4(n thuộc N)
ko pk là n thuộc N* nha sorry mk làm lại hoàn chỉnh luôn nha
vì n thuộc N ta có:
TH1: n =0
=> 5n-1=0 chia hết cho 4
TH2: n=1
=> 5n-1 =4 chia hết cho 4
TH3: n>1=> 5n có CSTC là 24
=> 5n-1 có CSTC là 24 chia hết cho 4
vậy 5n-1 chia hết cho 4(n thuộc N)