Giá trị của biểu thức : \(P=a^3+b^3+3ab\) biết \(a+b=1\)
a, Biết a^3+b^3=3ab-1. Tính giá trị biểu thức A=a+b.
b, Biết a^3-b^3=3ab+1. Tính giá trị biểu thức A=a-b.
Cho a+b=1 . Tính giá trị của biểu thức sau :
M= a^3 + b^3 + 3ab ( a^2+b^2 ) + 6a^2 b^2 ( a+b)
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)
\(\Leftrightarrow M=a^2-ab+3ab+b^2\)
\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)
Vậy: Khi a+b=1 thì M=1
Cho a+b=1 . Tính giá trị của biểu thức sau :
M= a^3 + b^3 + 3ab ( a^2+b^2 ) + 6a^2 b^2 ( a+b)
M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2
=1-3ab+3ab(1-2ab)+6a^2b^2
=1
Cho a + b = 1. Tính giá trị của các biểu thức sau: M = a^3 + b^3 + 3ab(a^2 + b^2) + 6a^2b^2(a + b).
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)
Cho a+b=1. tính giá trị biểu thức A =a3+b3+3ab
Ta co:a=a3+b3+3ab
=>a=(a+b)(a2-ab+b2)+3ab
=>a=(a+b)(a2+2ab+b2)
=>a=(a+b)(a+b)2
=>a=1.12
=>a=1
bn ơi... (a+b)(a2+2ab+b2) ko triển khai đc như thế đâu
Ta có: a = (a+b) - 3ab(a+b) + 3ab
= 3ab(a+b) - 3ab(a+b)
= (a+b)(3ab - 3ab)
= a+b
= 1
vậy a = 1
Cho a+b=1. tính giá trị biểu thức A=a3+b3+3ab
1. Cho x + y = 1. Tính giá trị biểu thức A = x3 + y3 + 3xy
2. Cho a + b = 10. Tính giá trị biểu thức M = a3 + b3 + 3ab
1, \(A=x^3+y^3+3xy\)
\(=x^3+3x^2y+3xy^2+y^2+3xy-3x^2y-3xy^2\)
\(=\left(x+y\right)^3+3xy-3xy\left(x+y\right)\)
Thay x +1 = 1 ta có
\(1^3+3xy-3xy.1=1+3xy-3xy=1\)
Cho biết a2 + b2 =1-2ab với a>0, b>0
Tính giá trị biểu thức M = a3 + b3 + 3ab
Có: \(a^2+b^2=1-2ab\)
\(\Rightarrow a^2+b^2+2ab=1\Rightarrow\left(a+b\right)^2=1\)
Mà: \(a>0;b>0\Rightarrow a+b>0\)
Do đó: \(a+b=1\)
Có: \(M=a^3+b^3+3ab=a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3=1^3=1\)
Ta có : M=a3+b3+3ab
=(a+b)(a2-ab+b2)+3ab=(a+b)(a2+b2-ab)+3ab
Ma : a2+b2=1-2ab
\(\Rightarrow\)(a+b)(a2+b2-ab)+3ab
=(a+b)(1-2ab-ab)+3ab
=(a+b)(1-3ab)+3ab
=a+b
Ma : a và b là hai số dương \(\Rightarrow\)a>0 va b>0
\(\Rightarrow\)Gia tri cua bieu thuc M=a3+b3+3ab = a+b .
Bài của bạn Trần Việt Linh đúng rồi , bài của mình sai rồi xin lỗi nha .
Đừng k cho mình , xin lỗi .